

FINAL REPORT

C-5 Fuel Cell Facility

167th Airlift Wing

Martinsburg, WV

Kyle Goodyear

Construction Management

April 7, 2010

Dr. Magent

C-5 Fuel Cell Facility 167th Airlift Wing Martinsburg, WV

Project Team:

Owner: 167th Airlift Wing, WV ANG General Contractor: Kinsley Construction, Inc. Architect: LSC Design Civil Engineer: Greenway Engineering Structural, MEP Engineer: TranSystems

Architecture:

- Split-face CMU covers first 10' of exterior wall space above finished floor level, with accent course Insulated metal panels cover all other exterior wall area
- Insulated translucent sandwich panels allow natural light into building
- MEGADOOR assembly on Southeast face- 14,600 SF Standing seam metal

Mechanical System:

Vented infrared radiant heaters in hangar (2) 15,000 CFM make-up air units Inline centrifugal exhaust fans (2) 300 GPM boilers 4,000 CFM air handling unit VAV boxes (3) 1400 CFM energy recovery units

Project Information:

Location: Martinsburg, WV Function: Hangar and Maintenance Building for C-5 Aircraft Building Size: 78,825 SF Project Cost: \$27 million Construction Dates: Oct. 2008 - May 2010 Delivery Method: Design-Build

Structural System:

- Drilled caisson foundations around perimeter of building
- Braced frame lateral force resisting system Structural steel framing with combination of wide flange and hollow structrural steel columns and beams
- K-series and Longspan joists supporting roof Steel trusses spanning nearly 220 feet

Electrical/Lighting System:

- Service transformer to convert 12.47kV utility distribution to 480Y/277V utilization 200A load break junction boxes distribute power to building
- Connections for 400Hz generators
- 277V fluorescent fixtures in support areas
- 277V metal halides in hangar area
- 277V HPS wall mounted on exterior
- 120V LED roof mounted as obstruction lights
- 277V LED emergency lighting inside

KYLE GOODYEAR

CONSTRUCTION MANAGEMENT

Construction Management Martinsburg, WV

TABLE OF CONTENTS

4
5
6
6
6
7
8
11
11
12
13
15
15
15
16
17
19
19
20
20
21
25
25

Page | 1

Construction Management Martinsburg, WV

Conclusions	26
Analysis 2: Precast Concrete Walls	27
Background Information	27
Goal of Analysis	27
Carbon Cast Panels	28
Structural Breadth Study	29
Cost Comparison	31
Schedule Impact	32
Conclusions	33
Analysis 3: Hangar Slab Sequence	34
Background Information	34
Goal of Analysis	34
Industry Survey	35
Three Slab Sequences	35
Cost and Duration Comparison	37
Conclusions	39
Analysis 4: Design-Build Productivity	40
Background Information	40
Goal of Analysis	40
Measurements of Analysis	41
Project Manager Survey	41
Owner Perspective	43
Causes of Delays	44
Potential Benefits and Restrictions	45
Conclusions Page 2	45

Final Report

Construction Management Martinsburg, WV

Appendix A: Site Plans of Existing Conditions	47
Appendix B: Site Layout Plans	48
Appendix C: Project Schedules	49
Appendix D: Steel Erection Sequencing	50
Appendix E: General Conditions Estimate	51
Appendix F: Structural Systems Estimate	52
Appendix G: Solyndra Specifications	53
Appendix H: Solyndra Calculations	54
Appendix I: Structural Drawings	55
Appendix J: Structural Calculations	56
Appendix K: Masonry Schedule of Values	57
Appendix L: Site Logistics Plans	58
Appendix M: Slab Sequence Estimates	59

Page | 3

Construction Management Martinsburg, WV

ACKNOWLEDGEMENTS

First and foremost, I would like to thank all of my friends and family members who have provided me support and guidance during my time in the Architectural Engineering program at Penn State.

I would also like to thank the following individuals for their time in assisting me through the development of my senior thesis project over the past year:

Kinsley Construction, Inc.

Keith Stewart	Project Manager
Dallas DiFiore	Project Executive
Andrew Rudolph	Quality Control Manager
Zak Wolpert	Estimator

WV Air National Guard, 167th Airlift Wing

LTC Bill Burkhart	Contracting Officer
Capt. Jeff Musser	Project Engineer

Industry Members

John Funkhouser, TranSystems	Matt Maxwell, Kinsley Construction
Anthony Anello, Solyndra, Inc.	Rick Barry, Lorne G. Seifert, Inc.
Gary Reed, High Concrete Group LLC	Michael Betting, Lorne G. Seifert, Inc.
Harvey Myers, Kinsley Construction	Jeff Border, Lorne G. Seifert, Inc.
Eric Dennis, Kinsley Construction	Abe Vogel, Clark Construction Group, LLC

Penn State AE Faculty

Professor Kevin Parfitt

Professor Robert Holland

Dr. Chris Magent

Page | 4

Construction Management Martinsburg, WV

EXECUTIVE SUMMARY

This document is a comprehensive collection of the technical analyses which have been performed on the C-5 Fuel Cell Facility project in Martinsburg, WV as part of the Penn State AE Senior Thesis assignment. Its contents include background information to the project such as: client information, local conditions, an explanation of the project delivery method that was used, project costs, and the project schedule among other items. Also included are the four topics of analysis which have been researched and developed over the past semester, as well as two topics of breadth study outside of the construction management option. Each of these analyses is directed at studying productivity on a construction project with respect to alternative methods and design options.

The first analysis that is discussed is the installation of a solar collection system to the roof of the C-5 Fuel Cell Facility. Specifically, the system produced by Solyndra, Inc. has been analyzed in order to determine the electrical output that could be expected from such an addition and then compared to the expected total power usage of the building. The second analysis involves changing all CMU walls on the project to precast concrete or prefabricated walls. The exterior façade is examined primarily on the basis of a quality finished product and the interior load-bearing walls are analyzed based on structural design. In both instances, cost and schedule impacts are discussed, as well as site congestion. The third area of analysis focuses on finding the most efficient sequence for constructing the slab on grade in the hangar area. The expectation of producing a quality product while maintaining high productivity is the key measurement, along with cost and schedule impact. The fourth analysis explores the affect that using the design-build delivery method has on project productivity, specifically on the management and design side of the project.

The breadth topics that will be discussed in this document focus on the electrical and structural options of Architectural Engineering. The breadth in electrical will come from the analysis of the solar collection system by calculating the approximate quantity of energy that could be produced and then determining the building's overall power usage. The structural breadth analysis will be part of the study on changing the interior load-bearing CMU walls to a precast concrete system. Design of a concrete wall structure based on the current loads will be completed.

Page | 5

Construction Management Martinsburg, WV

PROJECT BACKGROUND

CLIENT INFORMATION

The Owner and future occupant of the C-5 Fuel Cell Facility is the 167th Airlift Wing of the West Virginia Air National Guard. This unit is responsible for the flight and maintenance of the C-5 Galaxy aircraft. The Fuel Cell Facility is part of the overall C-5 Conversion project at the Martinsburg base which consists of major renovations to the West Virginia Eastern Regional Airport. Some of the other individual projects that have been completed as part of the Conversion project include complete reconstruction and expansion of the runways at the airport, construction of the Maintenance Hangar which is located to the immediate east of the Fuel Cell Facility, and a new control tower.

Cost expectations for this project are slightly different than private construction projects. As with all parts of the public sector, federal funding is set by a budget and the money must be spent or the budget will most likely be decreased in the future. Of course, this does not mean that there is unlimited funding and the project is still expected to be completed for budgeted cost. Completion of the project by the scheduled date is of importance to the owner mainly because of a desire to occupy the building as soon as possible. While the owner is not looking to make a profit from the final product as in commercial projects, the completion of this building means that the overall Conversion project is one step closer to being complete. Also, there are no plans for any phased occupancy of the building, so the Airlift Wing cannot move in to the building until completion.

Safety is of utmost importance to the Owner but has not been an issue on the Fuel Cell Facility project. This is due in large part to the safety program in place by Kinsley Construction which includes training of all individuals who are to work on the site, as well as safety inspections by company safety officials. The Contracting Officer, a Lt. Col. in the Airlift Wing, has discussed some of the discrepancies he has had in the past with contractors concerning safety issues, and expressed that he has no problems with kicking somebody off the site for violations.

With regards to the quality of the project, the Lt. Col. has also repeatedly explained, through examples of the two similar hangars on the base, what he expects as a result for the Fuel Cell Facility. While there are no high-end finishes in the hangar, the details that are present are expected to be just right. One item that has been specifically addressed is the jointing in the slab for the hangar area. The Lt. Col. has shown the two existing hangars and specified the parts in each that he likes best.

SITE CONDITIONS

SITE LOCATION

- Project located at West Virginia Eastern Regional Airport in Martinsburg, WV
- Part of base for 167th Airlift Wing of West Virginia Air National Guard

Page | 6

NEIGHBORING STRUCTURES

- North- Access road into and out of the base
- East- Maintenance Hangar for C-5 aircraft; almost identical to the proposed Fuel Cell Facility
- South- Taxiway and runway for C-5 aircrafts
- West- Fire department for the Airlift Wing

SPECIAL CONDITIONS

- As a military base, access is restricted
- Security of the runway is of extreme importance- painted lines on concrete of taxiway denote that contractors may not cross
- After blasting procedures, a survey was required to check for any stones that may have flown on to the taxiway
- Dust from construction activities is required to be minimized for sake of operation of aircrafts at the airport- site needs to be watered down
- All structures at the airport need to be lit at night as well as flagged during the day- this includes the building itself as well as the cranes being used on site
- Construction activities can be stopped at any time by Contracting Officer when under a security warning

See Appendix A for Site Plans

LOCAL CONDITIONS

PREFERRED METHODS OF CONSTRUCTION

The Martinsburg, WV region is one in which a particular structural system is not necessarily preferred over the other. That is, there are buildings with concrete structures as well as those with steel structures. For the Fuel Cell Facility though, it is obvious that a steel structural system is required due to the incredibly long spans that are required. Such a building could not be done as a concrete structure. All other parts of the project stay fairly close to the typical construction methods of the region such as slabs on grade and CMU exterior walls. The architectural features of the building, while not typical for any buildings outside of the base, match perfectly with the existing structures on the base.

CONSTRUCTION PARKING AVAILABILITY

The site for the Fuel Cell Facility is such that construction parking is very convenient. There is a large gravel covered area between the building footprint and the access road to the north which is used for job trailers, office trailers, and material laydown, as well as parking for the project.

RECYCLING AND TIPPING FEES

Disposal of all debris and construction waste is to be done off the base and is the responsibility of the contractor. The cost of this service is approximately \$650 per month.

Page | 7

SOIL AND GROUNDWATER CONDITIONS

According to the Geotechnical Report, the subsurface stratification is divided into two strata: (1)residual soils with sands, silts and rock fragments, and (2)rock which is primarily shale. From the borings that were completed, it was found that the condition of the shale for bearing ranged from being very poor to good. It was suggested in the report that drilled shaft foundations be used in order to have bearing on competent rock, hence the use of caissons. The report also stated that no groundwater was found during the borings, but noted that it may become present depending on the fracture structure of the shale. This information was based on the construction of the Maintenance Hangar to the east of the Fuel Cell Facility; no groundwater was found during borings for that building, but it was encountered when holes for caissons were drilled. Submersible pumps were used to dewater the drilled holes for the caissons when necessary, but subsurface water was minimal.

BUILDING DESIGN BACKGROUND

ARCHITECTURE

This project is primarily a functional building and does not display many outstanding aesthetic features. However, as mentioned in the *Client Information* section, the occupant is still interested in a quality product. The hangar features an extremely large door assembly on the Southeast façade which opens to the taxiway of the existing airport. Within the hangar there are adjoining offices and support rooms to the Northwest which will be primarily divided with CMU partition walls.

BUILDING ENCLOSURE

Building Façades: The exterior of the Fuel Cell Facility consists of courses of split-face CMU for the first 10' above finished floor level with an accent course at approximately 3' above finished floor, and insulated metal panels for the majority of the remainder of the wall areas. As mentioned previously, the Southeast face of the building is taken up mainly by the door assembly which is a polyester material. Insulated translucent sandwich panels are the means by which natural light enters the structure.

Roofing: A standing seam metal roof system is being used for this building, attached to 3.3" of rigid roof insulation which is fastened to 1.5" metal deck.

STRUCTURAL

The structural system for the Fuel Cell Facility is a structural steel system with a drilled caisson foundation. There are 3' and 6' diameter caissons that are located along the exterior edges of the building at varying spacing. These caissons are laid out symmetrically about the centerline of the building and vary in depth from 12' to 25'. Pier caps with cross sections ranging from 4' x 4'6" to 14' x 5'6" are made with 3000 psi, reinforced concrete. Wide flange and hollow structural steel shapes are used for the columns of the building, with sizes of W33x291 to W40x593 and HSS6x4x1/2 to HSS 16x8x1/2.

Above the support areas of the building, there are W24x94 beams with 27' spans supporting 18K4 joists and W36x393 girders with 30' spans supporting 24LH joists. In the hangar area of the building the

Page | 8

Construction Management Martinsburg, WV

structural steel is broken into two parts, the portions that will cover the wings of the plane and the portion that covers the fuselage, or the center of the building, which is much taller. At the interface of these two portions, on both sides, there is a steel truss configuration which spans approximately 219 feet. The trusses consist of W14x500 and W14x605 beams to form the top and bottom chords with interior members varying in size between W14x99 to W14x283. On the wings of the building, a grid of W12x65 and W24x94 beams make up the typical structural system. The center of the building has a grid of W12x87 and W16x67 beams typically.

Governing Codes:	Load calculations per ASCE 7-02

Concrete design and placing per ACI 318 and 301

ELECTRICAL

A new service transformer, on the North side of the building, will convert the utility distribution of 12.47 kV (delta) to the building utilization of 480Y/277V. Service for the building is provided from 200A load break junctions coming from an electrical cabinet in the electrical room. In the hangar area, 400Hz receptacles are provided as well as three 480V electrical and air compressor connection points. Connection points for 400Hz generators are located within the electrical room.

LIGHTING

In the support spaces of the building, artificial light is provided by a variety of styles of luminaires, some recessed and some pendant. All of these luminaires use 277V fluorescent T8 lamps. The hangar area is lit by 277V metal halide pendant luminaires, each providing 1000W of light. Outside of the building, 277V high pressure sodium luminaires are wall mounted, as well as 120V LED lamps which are mounted along the roof lines as obstruction lights. Emergency lighting is provided within the building by 277V LED lamps.

MECHANICAL

The Fuel Cell Facility mechanical system, like every other system, is different for the hangar than that of the support areas. The hangar area, due to the sheer volume and enormous doors, has a heating system and a ventilation system, but no cooling system. The heating is provided by 13 vented infrared radiant heaters which provide 300MBH each and are suspended from the structural steel. Ventilation comes from two 15,000 CFM make-up air units which are located, one each, in the two mechanical rooms. Inline centrifugal exhaust fans also support the ventilation system. For the support areas, the HVAC system consists of two 300GPM boilers, a 4,000 CFM air handling unit which connects to 4 VAV boxes, and 3 energy recovery units which average 1400 CFM each.

Governing Code: Per ASHRAE 90.1

Page | 9

Construction Management Martinsburg, WV

FIRE PROTECTION

A wet pipe automatic fire sprinkler system provides fire protection for the entire building. The water for this system is supplied from an existing fire pump house near the site. In the hangar area of the Fuel Cell Facility, a low-level high expansion foam system is also provided in addition to the wet pipe system.

Governing Codes:	Design of wet pipe for support areas per NFPA 13
	Design of wet pipe for hangar area per NFPA 13 with stringent modifications
	Design of HEF per ANG-ETL 02-15 Fire Protection Engineering Criteria
	Installation per NFPA 72 and NFPA 70

Page | 10

Construction Management Martinsburg, WV

PROJECT ORANIZATION

PROJECT DELIVERY SYSTEM

Construction Management Martinsburg, WV

The C-5 Fuel Cell Facility project has a unique organizational structure, as seen in the chart above. This abnormal structure has been used because a design-build delivery system was chosen for this project. The decision to use this project delivery method was determined based on the requirements of the funding for the project. As a federally funded project, the government was able to be selective in how this project was delivered. In some cases, this would cause projects to be bid as small business set-asides, but due to the size of this project that was not an option and so the design-build was the second option.

Kinsley Construction was selected to be the Design-Build Contractor and Project Manager based on a Lump Sum bid which was created from the preliminary project documents provided in the Request for Proposal. Acting as the Design-Build Manager and a general contractor, Kinsley was required to provide payment and performance bonds for the total value of the project. Kinsley Construction was also required to purchase Builder's Risk Insurance.

LSC Design was selected as the Design Project Manager for the project as it is an entity in the Kinsley family of companies. The contract between Kinsley and LSC is set up as a subcontract though, as are all of the contracts between LSC and the engineering firms that were selected. All of these contracts are based on a lump sum as noted above in the organizational chart. Subcontractors were selected based on lump sum bids to Kinsley Construction for the project and therefore the contracts are based on those lump sums. It can be seen in the organizational chart that Kinsley Construction opted to self-perform the sitework as well as the steel fabrication and erection.

STAFFING PLAN

Final Report

Construction Management Martinsburg, WV

The Project Executive's role in the project is to oversee the project as a whole and was primarily involved during the design phase of the project by coordinating with the Design Project Manager. He spends most of his time away from the site as he is also involved with other projects currently being worked on by the company. The Project Manager spends much more time on site and his duties include: cost control; working with the safety director; coordination with the Superintendent about manpower and materials; managing contractual arrangements with subcontractors; maintaining good working relations between Owner, Contractor, and Designer. The Project Manager also oversees all tasks completed by the QCM, Superintendent, and the Accountant relevant to the project.

The Quality Control Manager is on the site at all times and is responsible for the following: inspection of work put in place for compliance with design documents; reporting any deficiencies; field correspondence; review of plans and specifications for accuracy. Management of on-site activities is the responsibility of the Superintendent. He is in charge of: ordering and scheduling material deliveries; assigning crews; monitoring the deficiencies list created by the QCM; enforcing security on the site. The Project Accountant is responsible for tracking all costs and expenditures for the project.

SITE LAYOUT PLANNING

The site for the C-5 Fuel Cell Facility is fairly accommodating as far as space on the North side, but is fairly restricted on the other three sides. Unfortunately, Kinsley Construction, Inc. was unable to provide any site layout plans for me to analyze. Based on my visits to the site though, it seems that they were successful in locating items on the site effectively. Located in Appendix B, are site layout plans for three major phases of the Fuel Cell Facility project, excavation and foundations, steel erection, and building enclosure.

EXCAVATION/FOUNDATIONS

The excavation phase of this project consisted of blasting a large portion of the site in order to aid in lowering the grade to the design elevation. As can be seen on the Excavation and Foundation Site Layout Plan in Appendix B, the excess spoils of excavation were stockpiled near the center of the site, in an area which has no caissons. In doing this, the entire site did not need to be cleared of the excess spoils prior to foundation work, but instead they could be done simultaneously. The caissons were drilled with a drilling rig, the steel reinforcing cages were set, and then the concrete was placed. In some cases, dewatering pumps were needed to remove water from the bottom of the holes, but this issue was minimal. After the caissons were completed, the pier caps and grade beams were constructed, following the same direction of progression.

As mentioned previously, space on the project was not a major issue, with the entire North side of the project site being available for placement of office and storage trailers, as well as parking for all employees working on site. This area also allowed space for easy loading and unloading of excavation equipment at the times when it was required. It should be noted that this Northern portion of the site is at a higher grade than the portion in which the Fuel Cell Facility is located; this portion did not require mass excavation like the Southern part did. Due to this, a ramp was created during the excavation phase for easy access between the upper staging and office area, and the lower area in which the construction is taking place. The ramp is to be removed at a later date when construction of the new service road begins. Page | 13

Construction Management Martinsburg, WV

STEEL ERECTION

Steel erection for the Fuel Cell Facility is one of the most important phases of the project. For that reason, as will be discussed in the *Detailed Project Schedule* section, there were eight phases created in which the steel would be set; these phases can be seen on the sketches in Appendix D. Erection began with a single, 250 ton crawler crane setting columns in the Southwest corner and moving North along the West side of the proposed building. Meanwhile, two more crawler cranes were being constructed in the upper parking area. Two of the cranes worked simultaneously to set the transverse trusses which run approximately North to South, and the third was then used to hold the truss in place with the aid of temporary shoring towers. This set up was maintained until the apex trusses from the exterior wall to the truss were set.

Once the West side steel was erected, the process repeated itself on the East side. After all of the East side steel was erected, the high roof area steel in the center of the building was set. The most important part of this activity was the setting of the B-line truss which extends from the transverse truss on one side to the other transverse truss, creating the frame for the main hangar door. The setting of this truss required the use of all three crawler cranes, a feat that requires a great deal of communication and teamwork as well as planning. Temporary shoring was used to hold this truss in place until all other steel was set for the building.

BUILDING ENCLOSURE

The enclosure of the Fuel Cell Facility building consists of four major parts: CMU around the bottom of the building, insulated metal wall panels, standing seam metal roofing, and the main hangar door. The first three of these activities take place around the building in the same sequence as the steel erection. Roof deck was first set in the Southwest corner once the steel was erected and followed the erection process. The CMU walls were then constructed and the insulated wall panels followed behind. The main hangar door was installed at a later date. The installation of the roof panels, wall panels, and hangar door was completed with the use of platform and articulated boom lifts. On the upper level, the panels were set simply with manpower and scaffolding which was erected on the lower roof.

Page | 14

Construction Management Martinsburg, WV

PROJECT SCHEDULE AND COSTS

DETAILED PROJECT SCHEDULE

As a design-build project, the early portion of the schedule for the C-5 Fuel Cell Facility is slightly different than a project built using a traditional design-bid-build system. As can be seen on the *Detailed Project Schedule* in Appendix C, the project begins with the bidding and selection period, with the design phase beginning after the awarding of the project and the Notice to Proceed. When the design is nearing completion, work on the structural steel shop drawings commences as the design, fabrication, and erection of the steel are the major driving activities to keep the project on schedule.

It may be noted when comparing the *Project Summary Schedule* from Technical Assignment #1, also in Appendix C, to the *Detailed Project Schedule* that the duration for the structural shop drawings was increased, thus pushing back the fabrication of the steel. These issues in the steel design forced the entire construction schedule to be modified in order to maintain the original completion date. The schedules have been included in their differing states to illustrate the necessity of compression of activities later in the overall project schedule.

The construction of most exterior portions of the building revolves around the major steel erection sequences that were employed for the project. These sequences, as can be seen in Appendix D, break the building into eight sections with 1A through 2C covering all of the low-roof areas of the building and 3A through 3C covering the high-roof areas. Once the building is completely enclosed, the interior finishing process begins. All interior work, as can be seen on the schedule, has been broken into two separate portions, the hangar area and the administrative area, with many of the activities in the two areas being completed simultaneously. As the installation of the MEP systems is completed, testing and balancing of the systems begins, taking up the majority of the last month of the project schedule. Final inspection takes place immediately following the conclusion of all testing and building occupancy begins the following day.

PROJECT COST EVALUATION

COST SUMMARY FOR C-5 FU	EL CELL FACILITY	
Construction Cost:	\$23,551,204	\$298.78 per SF
Note: Construction Cost includes all costs except sitework, permits, and design fees		
Total Project Cost:	\$26,757,781	\$339.46 per SF
BUILDING SYSTEMS COSTS		
Mechanical System:	\$3,419,475	\$43.38 per SF
Note: includes HVAC and fire sprinkler		
Electrical System:	\$1,706,783	\$21.65 per SF
Page 15		

Final Report

Kyle Goodyear C-5 Fuel Cell Facility April 7, 2010 Advisor: Dr. Magent	Construction Management Martinsburg, WV	
Steel:	\$7,768,880	\$98.56 per SF
Note: includes s	structural steel and misc. metals	
Structural Concrete:	\$1,598,316	\$20.28 per SF
Note: includes f	oundations and slab on grade	
Sitework:	\$1,650,799	\$20.94 per SF

Note: does not include building earthwork, that is included in Construction Cost

GENERAL CONDITIONS ESTIMATE

The general conditions estimate for the C-5 Fuel Cell Facility was developed using a combination of RS Means Building Construction Cost Data 2009 and historical estimating data provided by Kinsley Construction, Inc. RS Means contained information concerning a majority of the reimbursable general conditions for the project, but for some items it was much more accurate to use the historical data from Kinsley due to deviations from the typical cost information. For example, it was necessary to use the historical data for estimating the cost of temporary storage trailers since many of these trailers are owned by Kinsley Construction. The costs in RS Means are based on rental of the trailers, but the cost to Kinsley for the trailers is much less since they have already been used on multiple past projects and paid for themselves.

General Conditions Estimate Summary

Description	Total Cost
Project Supervision	\$746,700
Field Office and Equipment	\$63,163
Mobilization	\$78,500
Temporary Utilities	\$1,430
Winter Protection	\$81,500
Bonding	\$240,821
Testing	\$106,000
Safety Supervisor and Training	\$159,500
Cleanup	\$56,000
GRAND TOTAL	\$1,746,717

Note: Grand Total includes extra costs beyond those listed.

The summary estimate shown above for the general conditions provides some of the major reimbursable costs for the project as well as the Grand Total. As noted, the grand total includes other costs that are not included in the table; it is included for comparison between individual components and the total. For example, it can be calculated from the listed values that *Project Supervision* makes up

Page | 16

Construction Management Martinsburg, WV

approximately 43% of the total general conditions cost. Other important costs included above that should be noted are *Bonding*, *Testing*, and *Safety*. Specifically, the cost of safety on this project may seem high but it should be noted that this cost includes a safety supervisor, an expense that could also be included in the project supervision category. However, upon inspection of the *Staffing Plan*, one would notice that a safety supervisor is not included. This is because Kinsley Construction handles all safety personnel through a separate division of the company.

See Appendix E for detailed General Conditions Estimate

DETAILED STRUCTURAL SYSTEM ESTIMATE

The structural systems estimate for the C-5 Fuel Cell Facility was developed through a hand takeoff of all structural concrete, steel, and load-bearing masonry. The quantities that were found were then entered into the online CostWorks program offered by RS Means, which provides cost estimates for 2009 and also allows a location factor to be entered. The unfortunate part of the RS Means software, as with the books from the same company, is that there is a limited amount of information available. For example, when looking at structural steel members for pricing, the maximum size for a wide flange member is a W18x106. This is most likely not an issue for most common buildings, however the structural steel for the Fuel Cell Facility is anything but common with columns as large as W40x593 and truss members as large as W14x605.

To combat this lack of information, the majority of the steel was estimated based on tonnage. All open-web joists were found within the RS Means charts and were priced accordingly, as well as the metal roof deck, but all hollow structural steel and wide flange members were totaled by tonnage. This limits the ability to break down the different parts of the structure, but as can be seen in Appendix D, there has been some differentiation made between portions of the system. Below is a summary of the structural estimate.

Page | 17

Construction Management Martinsburg, WV

Structural Systems Estimate Summary

	TOTAL	\$9,454,456.23
Wide Flange and Hollow	/ Members	\$8,110,373.44
Open-Web Joists		\$218,099.68
Metal Deck		\$243,222.40
STEEL		
CMU Walls		\$55,046.70
MASONRY		
Slab on Grade		\$591,272.22
Foundations		\$236,441.80
CONCRETE		
	•	•

ASSUMPTIONS/METHODS

- Open shop labor used for all parts
- "Concrete in place" category was used to include all formwork, reinforcement, placement, and finishing as one cost
- No overhead or profit is included in this estimate
- CostWorks from RS Means 2009 employed to create the estimate

See Appendix F for detailed Structural Systems Estimate

Page | 18

Construction Management Martinsburg, WV

ANALYSIS 1: SOLAR ENERGY COLLECTION

BACKGROUND INFORMATION

In the Request for Proposal documents for this project, there was a bid option to design the building such that it would be capable of obtaining LEED-NC Silver certification. The bid option was dropped because the bids came in over the budgeted amount for the project. It is my personal feeling that if the U.S. government wishes to promote sustainability to its citizens, it should lead by example, even if it means spending a little extra money. As a government-owned project, dropping the LEED Silver bid option due to monetary reasons is not exactly setting a good example. Even if the option is not selected, sustainable features could still be added to this structure.

Unfortunately, due to its shape and usage type, improvements upon the C-5 Fuel Cell Facility's energy efficiency with respect to mechanical systems would be extremely difficult. There is a gigantic space that is closed on one end primarily by a fabric door; this is obviously not going to prevent airflow between the interior and exterior of the building. However, there is also a very large amount of roof area on this building that is open to absorbing a great deal of solar energy. This is ideal for solar collection, a process that would reduce the amount of power that the Fuel Cell Facility would be taking from the grid.

Specifically, a potential product to be used on this project is one developed by Solyndra, Inc., which was discussed in one of the breakout sessions at the PACE Roundtable discussion. This product differentiates itself from the typical solar panels that many owners are trying to incorporate into their buildings through sheer production. The photovoltaic system created by Solyndra is able to convert a much higher percentage of the sunlight which hits the building's roof into electricity because of the cylindrical shape of its modules.

http://www.solyndra.com

Page | 19

Construction Management Martinsburg, WV

GOAL OF ANALYSIS

The primary goal of this particular analysis is to determine, through a constructability review, whether or not the installation of the Solyndra panels is a positive addition. The review is based on: estimated energy production, estimated building power usage, costs of acquiring and installing the system, and an estimated payback period. Schedule impact and productivity impact are also components of the constructability review.

SOLYNDRA PANELS

As mentioned above, the photovoltaic system which has been created by Solyndra, Inc. sets itself apart from the competition through its increased energy production capabilities. This is primarily due to the unique construction of the system. Unlike typical photovoltaic systems which are comprised of a flat panel, the Solyndra system is an array of cylinders. Solar collection is highly dependent on the angle at which the sunlight hits the collector; the closer the panel and sunlight are to being perpendicular, the better. This is why some flat plate systems incorporate sun-tracking mechanisms which allow the panel to rotate to follow the sun's position throughout the day. With the Solyndra system, sunlight is always hitting the cylinders at a perpendicular angle, meaning that there is greater collection potential.

One of the other benefits of the Solyndra system is the ability to collect reflected and diffuse light as seen in the diagram to the left. By leaving small spaces between the individual cylinders some light will pass through, but a portion of that light will also be reflected off the roof material and can then be collected on the underside of the cylinders. The amount of solar gain due to this reflected light is largely dependent upon the type of roof material that is installed beneath the Solyndra panels. For example, Solyndra recommends the use of a white TPO roof material as this will have the best possible reflective capabilities.

The space that is left between the individual cylinders serves other purposes as well. With these spaces, air flow is allowed to occur between the cylinders, and this has a dual purpose. First, the airflow through the panel reduces the need for significant mounting procedures. One of the major issues with typical photovoltaic systems is the uplift load from wind. Solyndra, Inc. states that the product has been tested and certified to be used in winds of up to 130 mph without any significant mounting. Second, this airflow allows the cylinders to be cooled off which allows for higher energy production. When photovoltaic systems are at high operating temperatures the production rate decreases, but with the Solyndra system the operating temperature is lowered, therefore increasing the production rate.

Page | 20

Construction Management Martinsburg, WV

ELECTRICAL BREADTH STUDY

The addition of a solar collection system to the Fuel Cell Facility would greatly impact the amount of electricity that would need to be purchased to run the building. To discover this impact, there are several steps that must be completed: calculating the number of panels that could be installed; calculating the potential amount of energy that could be produced; and calculating the approximate cost of electricity for the building. Other key factors when considering whether or not this would be a positive addition include: analyzing the cost impact of the project; calculating a payback period; and analyzing the schedule impact with respect to productivity in the field.

PANEL QUANTITY

The first step in determining the number of panels that could be installed on the Fuel Cell Facility's roof, is analyzing the orientation of the building. There is plenty of roof space on this structure to "slap on" on a lot of panels, but if those panels are only going to be producing a minimal amount of electricity, there is no sense in installing them. By examining the orientation of the building and considering the neighboring structures it was determined that panels should only be installed on the high roof area on the Southwest side of the building. The space that was selected can be seen highlighted in the diagram below. It includes three different sections with varying slope.

The next step in determining the number of panels was comparing the dimensions of the panels, which were found in the Product Specifications attached in Appendix G, to the dimensions of the roof sections. It was also important to account for walking space around sections of panels for maintenance purposes. As can be seen in the full calculations in Appendix H, it was determined that the panels would be oriented lengthwise down the slope of the roof. As a total for the three sections of roof being used, 13 panels can be installed in the lengthwise direction of the

panel. After factoring in the walking spaces, it was determined that 78 panels could installed in the widthwise direction of the panel. This totals to 1014 panels being installed on the roof of the Fuel Cell Facility.

Page | 21

Construction Management Martinsburg, WV

PANEL PRODUCTION POTENTIAL

Determination of the potential energy production for the Solyndra panels began with research on how to convert a given Power Rating found in the Product Specifications into kilowatt-hours. After learning that this was based on insolation, a measure of solar radiation energy on a given surface, it was necessary to determine what the insolation value is for the location of the Fuel Cell Facility. This information was found at www.gaisma.com which contains weather-related information from the NASA Langley Research Center, Atmospheric Science Data Center. The insolation values were reported as monthly averages for the location of Martinsburg, WV as can be seen in the table below. It was then necessary to multiply this value by the maximum power rating as provided in the Product Specifications as well as the number of days in the respective month. These quantities which can be seen in the far right column of the table are the maximum kilowatt-hours produced by a single panel in each given month and total to 274 kWh/panel for the year. The value seen in the *Max Power Rating of Panel* column is based on using the SL-0010200 model by Solyndra, Inc.

GAISMA Insolation Values for Martinsburg, WV							
Month	Insolation (kWh/m^2/day)	Sun Hours per Day	Max Power Rating of Panel (W _P)	Days per Month	Max Output for 1 Panel (kWh/panel)		
Jan.	1.85	1.85	200	31	11.47		
Feb.	2.59	2.59	200	28	14.50		
Mar.	3.56	3.56	200	31	22.07		
Apr.	4.59	4.59	200	30	27.54		
May	5.21	5.21	200	31	32.30		
Jun.	5.70	5.70	200	30	34.20		
Jul.	5.60	5.60	200	31	34.72		
Aug.	5.03	5.03	200	31	31.19		
Sep.	4.07	4.07	200	30	24.42		
Oct.	3.13	3.13	200	31	19.41		
Nov.	2.04	2.04	200	30	12.24		
Dec.	1.60	1.60	200	31	9.92		
MAX TOTAL ANNUAL OUTPUT FOR 1 PANEL (kWh/panel/year)					273.98		

This maximum annual output per panel which is noted in the above table must be reduced to account for the actual reflectivity of the roof. As mentioned previously, Solyndra recommends the use of a white TPO roof for maximum gain, but the design of the Fuel Cell Facility calls for a standing seam metal roof. During my contact with a Solyndra representative, Anthony Anello, I was able to acquire information $Page \mid 22$

which approximates the reflectivity of different roof surfaces. This information can be seen in Appendix G, on the page labeled Albedo Reflectivity vs. Annual Energy Yield. The chart on the left side of this page then equates the roof reflectivity values to annual energy yield as a percentage of the maximum. As can be seen on the chart, metal roofs have 45% reflectivity and would therefore be able to produce about 88% of the maximum energy output which was calculated earlier.

273.98 kWh/panel/year x 88% = 241 kWh/panel/year

The value calculated in the above equation represents the approximate amount of electrical energy that can be produced in one year by a single panel. To determine the total power output of the array of panels for a year, it is necessary to multiply simply by the number of panels which was determined earlier.

241 kWh/panel/year x 1014 panels = 244,374 kWh/year

ELECTRICAL USAGE AND COST

In order to determine an estimated cost of electricity for the building, it is first necessary to determine how much energy the building will use. Since the Fuel Cell Facility is somewhat of an uncommon type of building, there is little information available concerning average energy usage. However, the existing hangar to the East of the Fuel Cell Facility is similar in size and equipment. By contacting the Contracting Officer for the project, I found that the existing hangar used approximately 2380 kWh in the hangar space, but that the existing hangar is larger than the Fuel Cell Facility. The estimated quantity of power usage in the hangar space was determined as shown below.

2,380 kWh x (67,620SF/80,560SF) = 1998 kWh;

where 67,620SF is the area of the Fuel Cell Facility hangar area, and 80,560 is the hangar area of the existing structure.

Since the hangar space makes up only a portion of the building, it was also necessary to separately estimate the power usage in the office spaces of the Fuel Cell Facility. To accomplish this I researched average electricity usage for office spaces on the Department of Energy's website. The DOE reported that offices use, on average, 18.9 kWh/SF/year. To apply this quantity to the Fuel Cell Facility office space, required finding the area of the office space and simple multiplication.

78,825SF (total building area) - 67,620SF (area of hangar space) = 11,205SF

11,205SF x 18.9 kWh/SF/year = 211,775 kWh/year

TOTAL USAGE = 1998 + 211,775 = 213,773 kWh/year

It may be noted that the total usage approximation is less than the total production approximation, meaning that the Solyndra system could produce more than enough power to sustain the building without using power from the local grid.

Page | 23

Construction Management Martinsburg, WV

The next step to determining the approximate cost of electricity for the building, on an annual basis, is to find how much electricity costs in the area. Through research, it was found that the state of West Virginia's average electricity cost is 6.64 cents per kilowatt-hour, which happens to be fairly inexpensive in comparison to the national average which is 9.89 cents per kilowatt-hour. The approximate annual cost of electricity for the Fuel Cell Facility is as follows:

213,773 kWh/year x \$0.0664/kWh = \$14,195/year

Since it was already determined that the Solyndra system can produce more than enough electricity for the building, this \$14,195 would be saved each year. The additional electricity could most likely be sold back to the power company as well which would add further value to the system. This will be explored further in the payback period section.

COST OF ADDING SOLYNDRA SYSTEM

Through contact with Anthony Anello, a Solyndra sales representative, I found that the higher end panels cost about \$7/Watt/panel. This price includes purchasing of the system as well as installation of the system based on Solyndra's historical data. As mentioned previously, the 200 Watt panels were chosen to be used for this analysis. The cost of procuring and installing this system would be as follows:

\$7/Watt/panel x 200 Watts x 1014 panels = \$1,419,600

PAYBACK PERIOD

When considering the addition of most products which promote sustainability, the lifecycle cost of the building is very important. The calculation of a payback period is often a key factor in determining whether or not the system should be added, and therefore should be completed to analyze the Solyndra system. As mentioned previously in the *Electrical Usage and Cost* section, the approximated production of the Solyndra system is greater than the approximated usage of the building. The additional electricity could then be sold back to the power company which would, in a sense, increase lifecycle savings. Although the rate that the power company would pay to acquire the additional electricity is most likely lower than what they charge to sell it, the average cost that was presented above will be used for simplicity. To find the total approximate annual savings, the cost of electricity must be multiplied by the amount of electricity expected to be produced each year.

\$0.0664 x 244,374 kWh/year = **\$16,226/year**

The payback period is calculated as follows:

\$1,419,600 / \$16,226/year = 87.5 years

Page | 24

Final Report

Construction Management Martinsburg, WV

SCHEDULE AND PRODUCTIVITY IMPACT

To determine the impact that adding the Solyndra solar collection system would have on the schedule, it is first necessary to figure out when the installation would occur. Most certainly, the system could not be installed until the metal roof has been installed. Since the panels will only be on a portion of the roof, it is not necessary for the entire metal roof to be completed but may be helpful in terms of congestion of workers in the area. If the area becomes too congested, the productivity of the workers will decrease, potentially causing delays in the schedule for multiple activities. As can be seen on the Detailed Project Schedule in Appendix C, all work for the Metal Roof Panel Installation should be completed on 1/13/10. However it is also necessary to examine what other activities will be occurring simultaneously, specifically ones that might be taking place in the same area and could again cause congestion. According to the project schedule, other activities occurring at this time are site work, slab-on-grade preparations, and MEGA Door installation. The first two should not disrupt the Solyndra installation, but the door installation might. If the Solyndra system installation commences on 1/25/10, all activities in the area should be completed and productivity should be at a maximum.

Based on research concerning installation of the system, as well as examination of the project schedule with respect to the metal roof panel installation, the Solyndra installation should have approximately an 8-day duration. This includes staging the panels to the roof via crane, as was done for the roof panels, attachment done by hand, and electrical connections. The electrical connections are likely to be the only portion of the installation process that will negatively affect the schedule, since it will require the electrician to complete additional activities beyond his original scope of work. All other Solyndra installation activities would occur within the timeframe of critical path activities taking place at the same time. It would be suggested to bring in additional electrical workers to ensure that the overall project schedule is not delayed.

CONSTRUCTABILITY REVIEW

The main points to focus on when reviewing the potential for installation of the Solyndra system are: the amount of electricity that can be produced compared to the amount of energy used by the building; the cost of installing the system; the payback period; and the schedule impact of installing the system. It was found that the electricity produced is greater than the electricity used by the building, a positive. It was also discovered through the quantity of electricity produced and the cost of electricity, as compared to the cost of installing the system that the payback period is approximately 87.5 years, a negative. Finally, the project schedule was determined to be minimally impacted by the addition of this system, a positive. The key is to determine whether or not the positives outweigh the negatives.

Page | 25

Construction Management Martinsburg, WV

CONCLUSIONS

As was mentioned in the *Background Information* section, I feel that the government should lead the way in promoting sustainable technology usage and if feasible should implement its usage. However, after personally completing the constructability review for the addition of the Solyndra solar collection system, I must recommend that the system not be installed on the C-5 Fuel Cell Facility project. Based on the extreme payback period which was calculated, it is not a worthwhile investment for this particular project. It is important to note that one of the primary reasons for the payback period being so long is the low cost of electricity in the region that this project is located. In a higher cost region such as Washington D.C., the payback period would be greatly reduced thus making the installation of this system more feasible. Government leadership in the support of sustainable technologies is important for this country, but leadership in the smart spending of monetary funds is also important, particularly in the midst of the current economy.

Page | 26

Construction Management Martinsburg, WV

ANALYSIS 2: PRECAST CONCRETE WALLS

BACKGROUND INFORMATION

Due to schedule acceleration techniques that were necessary to make up time, masonry work which was originally not supposed to begin until steel erection was complete, was taking place during the erection process. This created some site congestion issues and also forced the masons to work more quickly than initially scheduled. On the façade of the building, these conditions along with adverse weather conditions caused some problems with the quality of the finished product, including broken CMU's and the appearance of efflorescence in many locations around the building. Site congestion was also experienced during the construction of the interior CMU walls since other activities such as MEP rough-in were taking place simultaneously. These are problems that commonly occur with on-site construction, especially when the schedule must be accelerated.

The use of precast concrete walls for both the exterior façade and the interior walls would lessen the impact of these conditions. For the exterior façade, one of the most important factors to be considered when looking at the precast wall system is whether it is possible to match the aesthetic features that are present in the design with CMU's. The two existing hangars of almost identical design as the Fuel Cell Facility feature the same CMU façade around the bottom portion of the exterior walls, and it is critical that this design feature be maintained on this building. For the interior load-bearing walls, aesthetics is far less of an issue. The key factor for these will be the necessary thickness of the walls to handle the current loading. It is important that additional thickness is not necessary; otherwise valuable floor space will be consumed by a wall.

Based on discussions in various classes, some of the major benefits of using a prefabricated or precast system are the improved quality that can be obtained since the construction is done in a controlled environment, as well the reduction of site congestion since a portion of the work is taking place off-site. Another benefit which has been explained in class is the increase in productivity. Under controlled conditions the product can be built much more quickly, and then once the product arrives on site it is installed more quickly than if masons had been constructing it on-site. The validity of these potential benefits will be examined in the following analysis.

GOAL OF ANALYSIS

A Cost vs. Value review will be used to determine whether or not precast concrete would be a better option than the chosen option of CMU for the wall construction of the exterior façade and the interior load-bearing walls. Arrival of this decision is the main goal for this topic of analysis. The Cost vs. Value review will be based upon the pros and cons of the precast system as compared to the CMU system. Particular areas of comparison include: quality of the final product; cost impact; potential for added value; and schedule impact with respect to productivity and site congestion issues.

Page | 27

Construction Management Martinsburg, WV

CARBON CAST PANELS

The portion of the exterior façade for the Fuel Cell Facility that is currently constructed with splitface CMU plays an important aesthetic role for the building. As mentioned above, there are two existing hangars of very similar design on the base, both of which implement the split-face CMU façade. Deviating from that style is not an acceptable option, thus making the usage of precast concrete walls somewhat restricted. The change in the system cannot cause a change in the architectural features. To be sure that a precast concrete wall could be made to look identical to the CMU wall that was designed, it was necessary to research various precast companies.

The results of this research were that a true precast concrete wall would not be able to match. However, several precast concrete companies also construct prefabricated walls which are composed of steel reinforcement, insulating foam, concrete, and a "thin brick" face. Specifically I chose to contact High Concrete Group LLC, located in Lancaster County, PA. High Concrete is a supplier of CarbonCast insulated wall panels, which is an example of the prefabricated wall system described above. According to my contact at High Concrete, the "thin brick" usage allows the façade to meet practically any set of specifications that a CMU wall can meet. A cutaway diagram of the CarbonCast system is shown below.

As mentioned in the *Background* Information section above, one of the major benefits of using a prefabricated system is the improvement in the quality of the product. The exterior facade of a building is the only part that many people ever see, thus making it very important that the impression it gives off is one of a quality-constructed building. Schedule acceleration and weather conditions were some of the causes of a reduced quality product in the CMU wall construction for the façade, both of which would not be factors in the construction of the CarbonCast wall system. The prefabricated system would be created in a controlled environment; one which has ideal temperature for working, ideal curing conditions for the concrete, and one which is not being rushed by the accelerated schedule on-site. Prefabricated construction of this type would also be done under much more stringent quality control requirements. Another benefit of using the prefabricated wall system is the increased

productivity which would occur within the controlled environment. This is largely due to the fact that there are skilled workers performing repetitive activities; a learning curve is set and the workers will continuously be able to complete the work more quickly while maintaining the same quality. Productivity for the installation of the system on-site will be discussed in later sections of this analysis.

Page | 28

Construction Management Martinsburg, WV

STRUCTURAL BREADTH STUDY

While changing the façade system for the Fuel Cell Facility has little affect on the structural demands of the building, changing the interior load-bearing masonry walls to precast requires structural analysis. As was briefly discussed in the *Background Information* section, one of the keys in switching to a precast concrete system is making sure the wall thickness is not increased. Due to the relatively low loads that these walls must support, the ideal situation would be to decrease the wall thickness and increase the usable floor space. There are two different conditions for the interior load-bearing walls, which are shown in the drawings included in Appendix I, but the only difference is the length of the joists which the walls must support. Therefore it was determined that the best solution would be to design for the two conditions separately concerning the wall thickness, and then use the more stringent condition for the design of the reinforcement. This design condition would then be applied for both sections of the wall in order to make construction uniform. The steps of the design process are discussed in the following sections.

LOAD DETERMINATION AND ASSUMPTIONS

The loads that the interior load-bearing walls must support were determined by contacting the Project Engineer for the 167th Airlift Wing, who happens to be an AE Structural Option graduate. I was informed that the loads could be assumed as follows:

	TOTAL LIVE LOAD	20 psf
Live Load:	Construction load	20 psf
	TOTAL DEAD LOAD	21.3 psf
	3" Batt Insulation	1.2 psf
	Steel Joists (avg. 4' oc spacing)	5.0 psf
	Collateral/Misc.	5.0 psf
	Suspended ACT	2.5 psf
	(2) layers of 5/8" Type X GWB	5.6 psf
Dead Load:	1-1/2" MTL Roof Deck	2.0 psf

Based on discussion with a fellow AE student in the Structural Option, the following assumptions were developed in order to complete the design of the interior concrete load-bearing walls:

Assumptions:	Concrete wall is concentrically loaded – axial load only; horizontal load is carried by wide flange steel beam Pinned-Pinned connection – k=1.0				
	f'c = 3000 psi; f'y = 60,000 psi				
	Page 29				

Final Report

Construction Management Martinsburg, WV

WALL DESIGN

It was determined that the most appropriate design method to use was LRFD or Strength Design and therefore the best load combination to use for each of the two conditions was:

1.2D + 1.6L

The complete calculations for design of each of the two conditions can be found in Appendix J, but the main parts of the design for Condition 1 are shown below. This condition is shown because it was determined to be the more stringent of the two conditions. The first step was to use the loads that were listed above and convert them into the axial load which the concrete wall is required to support.

 $P_D = 1193 lbs$

 $P_L = 1120 lbs$

PU = 1.2PD + 1.6PL = 3223 lbs = 3.22 kips

This calculated load is the amount that each of the steel joists is applying to the concrete wall at a 4' spacing. It was determined that the bearing plates on which the joists rest have an area of 67.5 inches squared each. It was also determined that the effective width for bearing is 38.75" based on a chosen wall thickness of 8". Next the wall was checked for both Bearing Capacity and Axial Load Capacity with respect to the ultimate load which was calculated above. These checks are as follows:

Bearing Capacity: $Pu \leq \emptyset 0.85 f' cA_b; \emptyset = 0.65$

0.65(.85)(3)(67.5) = 112 kips ≥ 3.22 kips OK

Axial Load Capacity: $P_u \le \emptyset P_n = \emptyset 0.55 f' c A_g \left[1 - \left(\frac{k l_e}{32h}\right)^2 \right]$

 A_q = effective width \times h = 38.75 \times 8 = 310 in^2 ; Ø = 0.70

$\emptyset P_n = 157 \text{ kips} \ge 3.22 \text{ kips OK}$

Based on these results, a wall thickness of 8" is acceptable and capable in both bearing capacity and axial load capacity. From this point, it is now necessary to design the reinforcement for the wall. Although there is no steel reinforcement necessary to support the applied loads, there are minimum steel requirements that must be met. The calculations are included in Appendix J, but the resulting steel requirement for the concrete wall is as follows:

#4 reinforcing bars @ 18" oc in the vertical direction

#4 reinforcing bars @ 12" oc in the horizontal direction Page | 30

Final Report

Construction Management Martinsburg, WV

INCREASED FLOOR SPACE

As was explained in the above calculations, a wall thickness of 8" was determined to be acceptable for meeting the design criteria. It can also be seen in the sections of the two different wall conditions that the CMU system requires a 12" wall thickness. A simple 4" reduction does not seem like much, yet when the length over which this 4" is gained is considered the additional floor space is fairly significant. The interior load-bearing walls have a length of approximately 356 lineal feet. When multiplied by the 4" reduction in wall thickness we find that 117 square feet of floor space is gained in the office areas. While 117 square feet still does not sound like much in comparison to the overall project, it becomes more significant when there is a price attached to it. According to the findings in the *Project Cost Evaluation* section, the Total Project Cost is \$339.46 per square foot.

117SF x \$339.46 = **\$39,71**7

The above equation shows that by decreasing the wall thickness from 12" with the CMU system to 8" with the precast concrete system, an additional \$39,717 worth of usable floor space is gained. Though the aesthetic quality of the interior walls may not be as important as it was on the exterior façade, the same conditions leading to a quality product that were discussed previously still apply. The increased productivity benefits would be experienced for the precast interior wall system as well.

COST COMPARISON

It is no secret that one of the most important factors when considering a change of systems is the cost impact. To compare the costs of the system that was instituted on the Fuel Cell Facility project, the CMU system, to the costs of the prefabricated and precast wall systems, it was necessary to acquire information from individuals in the industry. The most accurate cost estimation for the implemented CMU system would be the actual construction costs, which were acquired from the Project Manager in the form of a Schedule of Values which can be found in Appendix K. It can be seen on this Schedule of Values that the total cost of all masonry work on this project is **\$230,011** and even includes foundation work for which there is no precast concrete to compare with.

To create a cost estimate for the precast concrete and the prefabricated wall systems, I again conferred with my contact at High Concrete who provided me with a rough estimate for the two wall systems. The estimate I received stated that the production and installation of the two systems would average out at \$38 per square feet of wall. The calculation for the total cost of the two wall systems is as follows:

\$38/SF x (7622SF Façade + 5696SF Interior) = **\$506,084**

It is apparent that the cost of the precast and prefabricated systems is far greater than that of the CMU system which was used on the Fuel Cell Facility. In fact the difference between the two options is \$276,073. Stated in other terms, the precast and prefabricated combined system costs more than twice as much as the masonry system. However, to take a step back and look at this from a distance, this price differential is just slightly more than 1% of the total project cost.

Page | 31

Construction Management Martinsburg, WV

SCHEDULE IMPACT

The affect that changing from a masonry system to a precast concrete system has on the schedule of the project must be examined in multiple dimensions. First of all, the duration of activities on site must be compared for the two systems. Clearly the shorter the schedule is the lower costs will be, specifically due to General Conditions costs which were discussed earlier. It can be seen in the *Detailed Project Schedule* in Appendix C that the total duration of the masonry work for both the exterior façade and the interior load-bearing walls is 25 days. Based on information provided by my contact at High Concrete, the total duration for erection of precast and prefabricated panels on-site would be 15 days. This duration was developed according to an estimated 125 panels that would be constructed off-site and then erected by means of a truck crane. It is quite obvious that there is a 10 day difference in the duration of activities on-site, so one would assume that the overall schedule could be reduced by this amount. In the form that the project was originally scheduled, the *Project Summary Schedule* in Appendix C, this assumption would have held true. Unfortunately, due to necessary schedule acceleration, the masonry work overlapped with the steel erection, an activity which was on the critical path and lasted beyond the completion of masonry work. Therefore, the reduction in duration that occurs by switching to the precast and prefabricated system is essentially negligible for the overall project schedule.

Other than the duration of the work itself, it is also necessary to examine the schedule impact in terms of site congestion and productivity, two issues which go hand-in-hand. As was mentioned in the previous paragraph, no matter which option is selected, the activities will be taking place simultaneously with steel erection. This obviously creates some site congestion concerns, which was one of the primary reasons for completing this analysis. The more congested the site becomes with equipment and manpower, the greater the potential for losses in productivity. To compare the logistical issues on the project site for each of the two options for wall construction, site logistics plans have been developed, each of which accounts for the ongoing steel erection process. These plans can be found in Appendix L.

It can be seen in these plans that by implementing the precast and prefabricated wall system instead of the masonry wall system, all scaffolding around the building would be eliminated as well as the mortar mixing station. The forklift traffic which is noted on the Masonry Site Logistics Plan is also eliminated for the precast option, but is replaced by the truck crane and delivery truck traffic which is necessary for erecting the concrete panels. Based on the information explained in this *Schedule Impact* section and prior knowledge, the following conclusions have been made concerning productivity and site congestion issues:

- The decreased duration on site means that site congestion does not last as long
- Fewer workers will be on-site for the precast erection than the masonry construction; less congestion and higher productivity
- Erection of interior walls during steel erection could cause significant congestion issues; more congestion and lower productivity
- Maneuvering the delivery truck and crane on the South end of the building may cause delays; productivity of the erection would be decreased

Page | 32

Construction Management Martinsburg, WV

Overall, it seems that the site congestion level for the two options is almost equal. While the precast and prefabricated systems could be installed with fewer workers on-site and without the scaffolding, it would require the addition of two large vehicles to be maneuvering about the site. It seems reasonable to assume that the productivity rate of the precast and prefabricated system is still higher than that of the masonry system based strictly on the duration of the activities, and that productivity of other activities would be higher with a precast system since there would be less overlapping time.

CONCLUSIONS

As stated in the *Goal of Analysis* section, a Cost vs. Value review is necessary for determining whether or not the precast system is the best option for the Fuel Cell Facility. To do this, it is advisable to compare the pros and cons of changing to this system from the CMU system that was used. First, the main negative factor of switching systems is the additional cost of \$276,073. The positive factors of the switch include: increased office floor space valued at \$39,717; higher quality product for the façade; decreased duration of activity on site; and increased productivity. It is difficult to place a monetary value on quality as it is all a matter of perspective of the owner. However, since the owner seems to be happy with the final product that was achieved with masonry on the other two hangars, it is unlikely that they would attach a very high value to the improvement with the prefabricated system. As was mentioned earlier, the decreased duration does not affect the overall schedule and therefore does not provide any monetary savings through general conditions costs. The only chance of adding value through the increased productivity would be if other activities on-site were greatly affected and the overall project schedule would be decreased.

It seems that the use of precast concrete and prefabricated walls is not a better option than the masonry system that was used on the Fuel Cell Facility. Perhaps, if the CMU façade covered the entirety of the exterior walls instead of the base only, the cost of the prefabricated system would be more competitive. It is also possible that if there were a much greater amount of load-bearing walls, the increased floor space achieved through reduction in wall thickness would help overcome the increased cost. For the quantity of wall space on this project that could be potentially changed, it is clear that the design team chose wisely in selecting a masonry system rather than a precast concrete one.

Page | 33

Construction Management Martinsburg, WV

ANALYSIS 3: HANGAR SLAB SEQUENCE

BACKGROUND INFORMATION

The hangar slab of the Fuel Cell Facility, as I have been informed by the project team, must meet specific requirements according to the ANG-ETL documents from the Air National Guard, specifically regarding the placement of dowels in the concrete. The document states that all construction joints require epoxy-coated dowels which shall be placed by means of drilling the previously placed concrete. To complete this process in the correct manner, a minimum of 3 days must pass from the time the concrete is placed until the drilling can begin. In order to reduce the number of days that are spent waiting for drilling, the project team decided to complete the slab in as few sections as possible. The diagram below shows a rough plan of the different sections of the hangar slab, as constructed. The bottom two sections are each approximately 75 feet in width.

While this plan for placing the slabs certainly saves some time by eliminating the number of construction joints with dowels, it created many headaches for the project team when it came to determining effective finishing methods. The 75 feet sections are much wider than most slab pours that Kinsley Construction typically deals with on other projects. To complete the process, some of the intended finishing techniques must be modified and potentially compromised.

GOAL OF ANALYSIS

The goal of this analysis topic is to derive the most efficient sequence for the hangar slab construction for the C-5 Fuel Cell Facility project. The efficiency of the sequence will be primarily measured by cost and schedule impact, as well as productivity and expected quality of the finished product. Since the quality and productivity cannot truly be estimated by simply looking at a sequence diagram, it requires the use of historical data.

Page | 34
Construction Management Martinsburg, WV

INDUSTRY SURVEY

As mentioned above, historical data was needed to perform this analysis. It was decided that the most useful form of historical data would be the experience of industry members who have actually been a part of completing large concrete pours such as the one present on the Fuel Cell Facility project. To gather the knowledge of industry members, a survey was created with a series of questions pertaining to their individual preferences for placing concrete and their observations from completing a variety of widths of concrete pours. The survey questions that were sent to the industry members are as follows:

- When placing concrete, do you prefer fewer pours of larger sizes, or a greater number of pours with smaller sizes?
- Which of these options is typically completed with higher productivity?
- Based on experience, what is the largest width of a pour that can be done while maintaining maximum efficiency?
- How does the width of the pour affect the crew size that is necessary?
- How does the width of the pour affect the type of equipment that is necessary?

The responses were unanimously in favor of completing the project in fewer pours of a larger size, and each of the industry members surveyed stated that using larger widths of pours yields a higher productivity rate. For the question about the largest width of a pour with respect to maintaining maximum efficiency, a variety of answers was received; the range that was found was anywhere from 60' in width to 120' in width. Most of the surveyed industry members explained in their responses that using larger pour widths creates a need for a few extra workers as well as some extra finishing equipment.

It is important to note that the responses that were received did not exactly match my personal thoughts and expectations. It was not surprising that the industry members preferred fewer pours of larger widths over the greater number of smaller pours. However, it was my expectation that the widths of pours that could be completed with maximum efficiency would have been significantly lower, based on discussion with the Project Manager for the Fuel Cell Facility project. During one of my site visits, it was explained that there were issues in how to complete the finishing stage of the concrete because of the large widths of 75', as was mentioned previously. From this discussion, and due to my lack of experience, my assumption was that a 75' width was much greater than the typical size for concrete placement. Since the results of the surveys differed from the hypothesis, it was necessary to tweak the method of analysis.

THREE SLAB SEQUENCES

The original plan for this analysis was to use the responses from the third survey question and simply average the widths to determine an approximate maximum size concrete pour that could be expected to maintain peak productivity. This maximum size pour would then be implemented into a construction sequence to determine what would presumably be the most efficient sequence for the Fuel Cell Facility project. However, when the responses simply proved that the 75' width was average, the analysis had to be adjusted. Upon the suggestion of my advisor, Dr. Chris Magent, it was decided to design three potential sequences for the hangar slab construction and then complete a cost and duration comparison to determine the most efficient sequence. Images of the three sequences are shown below.

Page | 35

Construction Management Martinsburg, WV

Page | 36

Construction Management Martinsburg, WV

The first of the sequences is meant to be a rough equivalent of the sequence actually used for construction on the project. The actual design calls for an inward sloped piece around the edges of the hangar space, following the walls. However, for comparison purposes, it was decided to simplify the design since the cost of completing this portion of the slab construction would be approximately equal regardless of the sequence chosen. As can be seen in the image of Sequence #1 above, there are five separate pours of varying sizes. The first pour in the sequence has a width of the 80', the second is a 75' width section, the third pour has a 43' width, and the fourth and fifth pours each have a width of 42'. Clearly this sequence involves some pours that fall within the range of maximum width for peak productivity that was determined from the survey responses. It also includes slabs with widths below this maximum range. These slabs with the smaller width, based on the discussion with the Project Manager, were not of nearly as much concern in terms of finishing the concrete.

The second sequence of slab pours implements six different pours to be completed in alternating succession as can be seen in the image above. For this sequence, the different pours are much more similar in width; the four pours in the lower portion of the building are each 49.5' in width and the upper two are again 42' in width as in Sequence #1. The purpose of Sequence #2 is to look at completing the construction in more pours of a smaller width, as was the original intent of this analysis. Obviously the 49.5' width does not fall within the range of maximum widths that was found in the surveys, but due to the dimensions of the building, it was the most representative size to use for examining the lower end of the range while maintaining the idea of a greater number of pours. Use of this sequence would presumably allow for a higher quality finished product based on the information provided by the Project Manager.

Sequence #3 is based on the higher end of the range of maximum widths, but again was influenced by the dimensions of the building, as is any sequencing of activities. As seen in the image above, the larger widths allowed this sequence to be done in a fewer number of pours. The first two pours of this sequence each have a width of 90' and the third has a width of 84'. Using this sequence would further reduce the number of construction joints necessary, as well as the number of dowels to be drilled for, which was the reasoning by the project team for using larger width pours from the beginning. However, it also would most likely make the finishing process more difficult and potentially lower the quality of the finished product.

COST AND DURATION COMPARISON

To determine which of these three sequences is the most efficient requires comparison of some hard numbers. The quality impact of the different sequences, which was discussed in the previous paragraphs, is important but is difficult to quantify for measurement. Through the use of RS Means 2009 Construction Cost Data, an estimate for the cost of each of the three sequences was created as well as an approximate number of hours that would be required for completing the work. It is important to note before examining the estimated durations that they should not be associated directly with the construction schedule of the project. They have been derived by implementing the Crews that were included in Means and were not adjusted to meet the schedule since their creation was meant solely for comparison of the sequences against each other. These durations also do not include the 3 day waiting period necessary before drilling for the dowels.

Page | 37

The full estimate sheets can be found in Appendix M. The total cost and duration estimates for the three sequences are as follows:

Sequence #1: Total Cost = \$408,290.78, Total Duration = 427.90 hours Sequence #2: Total Cost = \$414,533.98, Total Duration = 458.26 hours Sequence #3: Total Cost = \$401,025.78, Total Duration = 384.53 hours

The derivation of these values, as can be seen in the full estimate sheets, involved adjusting the Daily Output values to reflect the information that was provided in the surveys of industry members. Since the response to all surveys was that productivity increases with the width of the pour, as long as it is not above the maximum range, the Daily Output value provided by Means was adjusted up or down based on the width of the individual pour being analyzed. This adjustment and the quantities determined through a detailed take-off produced the results seen above. As mentioned earlier, the Total Duration values do not reflect the necessary 3 day waiting period necessary for drilling for the dowels at all construction joints in the concrete. In general, the durations of each of the three sequences would be increased when considering this factor, and though the additional time added would not be equal, the differences can be assumed to be negligible.

It is clear from the values of cost and duration listed above that the sequence with fewer pours of a larger size is cheaper and takes less time than the sequence with more pours of a smaller size. Sequence #1, which represents the as-built construction sequence falls almost right in the middle. To compare the cost of the two new sequences against the as-built sequence in terms of percentage, the numbers come out as follows:

Sequence #2: $(414,534 - 408,291)/_{408,291} = 1.5\%$ higher Sequence #3: $(401,026 - 408,291)/_{408,291} = 1.8\%$ lower

These cost differences must also be correlated back to the difference in expected quality of the finished product. It is yet again proven that a higher quality product comes at the expense of more money and more time. Another element that may not be quite as obvious is that a higher quality product sometimes causes a reduction in productivity. To be certain that a finished product turns out well, specifically concrete in this case, extra time and care must be taken. This extra time required to be spent for a given quantity of work leads to the downfall of productivity. Maintaining both high quality and high productivity is a challenge that is presented every day in the construction industry.

Page | 38

Construction Management Martinsburg, WV

CONCLUSIONS

The sequence of concrete pour sizes that was selected by the project team for the Fuel Cell Facility hangar slab construction seems to be the best option of the three sequences analyzed based on cost and duration, as well as the quality impact. It is possible that by implementing slightly larger pour widths, the cost and duration may be reduced through higher productivity, while maintaining the same level of quality. However, the dimensions and shape of the hangar area are not very conducive for creating many varieties of sequences. My recommendation, if this project were to be repeated, would be to use the same sequence and method for construction that was chosen by the project team. For other projects which may not have as much concern as far as the quality of the finish, utilizing larger pours may be more beneficial.

Page | 39

Construction Management Martinsburg, WV

ANALYSIS 4: DESIGN-BUILD PRODUCTIVITY

BACKGROUND INFORMATION

The use of the design-build delivery method for construction has become more common over the years and there have been many advantages found by using this collaborative system. One of these advantages, as discussed in various classes in the AE curriculum, is that productivity in the field is improved due to a reduced number of Requests for Information and Change Orders. Since the contractor and the various engineers are working together in the design stages, fewer questions are left to be answered when it becomes time for the drawings on paper to become a building in the ground. It has been proven time and again that employing a design-build approach decreases the overall schedule of a project, primarily because construction often begins before the design stage is complete. A question to be answered is, does this approach create better efficiency for the designers and construction managers?

Productivity in the field is fairly simple to measure, whether it is how many cubic yards of concrete were placed in a day, or how many windows were installed in a week. However, quantifying productivity in the office requires further investigation. To analyze this topic, it is necessary to obtain information from industry members who have been involved with both the traditional delivery method of design-bid-build as well as the design-build delivery method. This information can primarily be acquired from construction professionals who have worked under both methods. It is also worthwhile to examine this topic from the owner's perspective, specifically an owner who has been involved with both delivery methods. Fortunately, as mentioned in previous documents for this thesis assignment, there are already two hangars on the base of the 167th Airlift Wing which are similar to the Fuel Cell Facility, one which was constructed using a traditional design-build approach and one that was done under a design-build approach. The Contracting Officer for the Fuel Cell Facility project held the same role in each of the other two hangar construction projects, and is therefore a qualified individual to speak on the subject.

GOAL OF ANALYSIS

Finding the answer to the question asked above is the primary goal of this analysis. This answer will be derived through a variety of resources. As mentioned above, the experience and knowledge of industry members plays a key role. It is also necessary to explore how the design-build delivery method specifically affected this particular project, with regards to productivity and efficiency for the project team. Since not every project team is entirely familiar and comfortable with the design-build method of construction, simply due to lack of exposure, it is also necessary to analyze the potential benefits and restrictions that are presented with this delivery method when it is used as intended.

Page | 40

Construction Management Martinsburg, WV

MEASUREMENTS OF ANALYSIS

A specific set of measurements must be employed in order to determine if design-build does indeed create better efficiency and productivity for the design and management teams of a particular project. There are no true numerical values to compare, only individuals' inputs and perspectives based on previous experiences. Since production rates for office work are rarely calculated, it is more of an abstract idea to analyze; hence the predetermined measurements which are listed below. These measurements will again be discussed to conclude this analysis after examination of the information provided.

- Time spent for preconstruction activities
 - Design
 - Estimating
 - Acquisition of subcontractors
 - Amount of paperwork required to be completed during construction
 - Requests for Information
 - Change Orders
 - Submittals
- Ability to work ahead
 - Long lead item procurement
 - Permitting
 - Determining means and methods for construction
 - Subcontractors scheduling their labor and equipment in advance

PROJECT MANAGER SURVEY

To procure information from industry members who have been involved in the management of both design-bid-build projects and design-build projects, it was decided that survey would be the most efficient option. The following questions were sent to several professionals working in the realm of project management, with a variety of levels of experience.

- 1. How many design-build projects have you worked on? How many design-bid-build projects?
- 2. Which delivery method typically runs more smoothly from a management perspective?
- 3. In your opinion, is the productivity level higher within the management and design teams for one method over the other? If so which one is higher?
- 4. Have you noticed a significant difference in the number of RFI's and change orders for one method over the other? If so, which one typically has fewer?
- 5. Which delivery method do you prefer to work with? Please provide reasons.

The responses to these survey questions were mostly in favor of the design-build delivery method over design-bid-build. As mentioned, the level of experience of these individuals varied greatly, which became apparent when reviewing the responses to the first question. The preferences that were displayed through the responses to Question #2 were much more similar. Design-build was the clear leader as far as

Page | 41

how smoothly a project typically runs from the management perspective. One explanation for this decision is as follows:

"There is less coordination during construction because the design-build contractors have designed, coordinated, and selected their material during design. It makes the submittal, procurement, and field coordination process smoother."

Another response to this question, though in favor of the design-build method, explained that this method requires a significantly greater amount of time spent by the management team due to involvement with the design process, rather than simply helping in the bidding stages of the project as is done with a design-bid-build method. One survey participant who was in favor of the design-bid-build approach stated that design-build does not run as smoothly due to the fact that the project team must deal with a design that is not fully developed, making it harder to manage the project.

Question #3 again received responses that were strongly in favor of using the design-build delivery method. Some examples that were provided to support the responses were as follows:

- Construction methods are decided during the design phase so the design is completed accordingly.

- Response time from the design team is better since they are contracted together.

- Submittal process is reduced by almost half since the design and construction teams choose the materials together. This means that the specifications are met the first time the paperwork is submitted.

- Costs are known upfront since estimating procedures take place simultaneously with design, rather than waiting until design is completely finished.

- Procurement of long lead items and permits can begin immediately after certain design phases are completed. In design-bid-build, the contractor must wait until they are awarded the job.

Clearly one of the repeating themes of these responses is saving time and beginning activities sooner. Reduction of the overall schedule of a project has been, and always will be, one of the major challenges in the construction industry.

The fourth question, which dealt with comparing the number of RFI's and change orders that occur for the two different delivery systems, received a unanimous response that design-build has fewer of each, as was expected. Most survey participants explained that RFI's are not truly present in the design-build system, at least not in the formal sense that they exist in design-bid-build. Instead, all questions are discussed openly at meetings since the contractor and designers work as a team. Change orders are also minimized since the design-build team is responsible for having everything covered in the design documents from the start. The only change orders that occur are due to changes by the owner and unforeseen conditions that may arise during construction.

Page | 42

Construction Management Martinsburg, WV

In regards to the question concerning the preferred delivery method to work with, mixed responses were received. Some said that they have no real preference since they believe there are pros and cons to each method. One response stated that the traditional design-bid-build system is better because there is less gray area, while another explained that design-build is preferred because it gives the contractor greater control in directing the progress of the project. A theme that was repeated in most responses though, was that the right individuals can make either system work.

OWNER PERSPECTIVE

As mentioned in the *Background Information* section, the Contracting Officer for the 167th Airlift Wing for the Fuel Cell Facility project was also involved in the construction of each of the other two C-5 aircraft hangars on the base. Lt. Col. Burkhart was willing to grant me a phone interview to discuss delivery method differences from his perspective in the project. If there was one resounding point that the Lt. Col. made clear in our discussion, it was that the delivery method is only as successful as the contractor who is implementing it. From his experiences in dealing with both design-build and design-build projects, the contractor is the most important variable in the equation.

He explained that he has found the traditional method to be very successful, especially if the design documents are well done. However, he also stated that if the design documents are unclear, life as the owner representative can be a nightmare. In the design-bid-build methodology, the contractor has minimal say in the design process and therefore is subject to the drawings they receive. In summary the traditional method, from the Lt. Col.'s perspective, is more dependent on the design professional and takes away some of the control that the contractor has on the project.

In the design-build method, the contractor is able to be a part of the design phase and in that sense has much greater control over the quality of the design documents which they will be using. The Lt. Col. specifically noted that the design-build delivery method forces the contractor to be much more knowledgeable since they are involved in the design. He stated that the contractor needs to "do their homework" to be sure they understand the project much earlier on in the process than is required in the traditional method. It was also acknowledged that projects such as the Fuel Cell Facility and other government-funded projects typically have a different process that must be followed as well as some slightly different standards which can make life difficult for both the contractor and owner if the contractor is unfamiliar with that type of work. This accentuates the point of the contractor needing to work ahead of time to be sure to understand the project.

The final factor that the Lt. Col. addressed concerning the use of design-build methodology is the necessity of the owner to know what he or she wants. He explained that, while the contractor needs to put in the extra time to understand the project, the owner is accountable for assisting the contractor and design teams when questions arise. If the owner is indecisive and incapable of expressing the needs and desires for the project, the contractor and design team will be delayed and possibly produce something that is not satisfactory. The overall knowledge gained from the interview with Lt. Col. Burkhart was that the productivity, or efficiency, of a delivery method is restricted by the capabilities of the contractor selected for the project, and the efficiency of that contractor can only be as good as the resources he is allowed to work with.

Page | 43

Construction Management Martinsburg, WV

CAUSES OF DELAYS

It is also important to take a look at how using the design-build delivery method may or may not have affected the productivity on the C-5 Fuel Cell Facility project. A brief discussion with the Project Manager for the project provided some insight into this topic. It had been brought to my attention early on in my studies of this project that it had fallen behind the original schedule by a significant amount of time and this was due in large part to the design of the structural steel system. Since the erection of steel was the driving factor of the critical path, it became apparent that schedule acceleration techniques were necessary. This topic was discussed in Technical Assignment #3 and will not be explained in detail at this time.

The driving point of the conversation with the PM was determining what the exact cause was for the delays in the steel design, and whether or not it was a function of the delivery method. When asked if he felt the delays were related to the design-build method being used, for example due to unfamiliarity with the process, the PM was pretty adamant that this was not the cause. Rather he explained that the major cause of delays in the structural design phase was a lack of familiarity with designing structures like that of the Fuel Cell Facility. I was informed that TranSystems was selected as the structural design firm by Kinsley Construction because of their experience with hangar design. Unfortunately, TranSystems is a nationwide firm and the designers having experience with hangar design resided in a different office than the one working on the Fuel Cell Facility. Help was eventually provided by the more experienced offices, but until the schedule had already suffered significant delays. In other words, the potential for high productivity in design due to previous experience was never realized.

The Project Manager also explained that another opportunity for improved efficiency that was not realized came in the design of the MEP systems. This was especially disappointing considering the design of all MEP systems was completed by a single firm, again TranSystems. It is not the intent of this analysis to "pick on" this company, simply to point out room for potential improvement from an educational standpoint. It was explained to me that all of the MEP subcontractors were brought into the project early for a design-assist role, which is very common in design-build, and worked with the design team to create an efficient construction process. Regrettably, the MEP design teams did not coordinate well with each other and many issues still occurred during construction. It might be assumed that, had this project not implemented a design-build delivery method, the coordination issues could have been even greater for the MEP trades.

As far as coordination between the design teams and the project management team, the PM stated that he did not feel there were any issues. His only regret was that he did not become more involved in the design phase, particularly the structural design since he has a strong background in this area. He explained that his knowledge of structural design did come in useful for the foundation design as far as simplifying an over-designed system. The main problem that arose with the structural design process was that by getting behind early the design team was forced to react to new issues rather than being proactive and coming up with more efficient designs. In summary, several potential chances for improved efficiency through the design-build method were never fulfilled. The PM did express his personal feeling that the design-build method yields better productivity within the design and management teams if those opportunities are realized.

Page | 44

POTENTIAL BENEFITS AND RESTRICTIONS

In the research of this topic, there were instances in which opposing arguments occurred. For example, one source provided information about accountability being greater in the design-build method, explaining that the system reduces finger-pointing between the contractor and design team since they all work together to meet the owner's needs. Another source discussed how accountability is reduced because there is no process of checks and balances between the design team and contractor since they are all working as one entity. Both are valid points and emphasize what has already been discussed earlier, the efficiency and effectiveness of the design-build method is highly dependent on the contractor, or more specifically the design-builder.

There were several other examples of both benefits and restrictions which reiterated information presented earlier in this analysis. Some examples of benefits include: the ability of the contractor to control the cost of the project through the design process; the capability of procuring long lead items early on; and the almost complete elimination of change orders. Examples of restrictions include: the need for a knowledgeable and decisive owner, and the need for coordination between members of the design-build team.

CONCLUSIONS

To summarize the information that has been discussed in the previous sections, it is necessary to review the predetermined measurements of analysis and see what the studies of this topic have found. Based on what was found, it appears that the preconstruction time is capable of being reduced, but is highly dependent on the knowledge and experience of the design team as well as the focus on coordination between parts of the design team. It was determined that the design phase can be completed more efficiently because of the ability for subcontractors to assist the design team and reduce the number of changes that occur later in the project. Also, because cost estimating can be completed simultaneously with design, there is not an extended period of time spent for take-off. Cost comparison of materials is handled as the systems are selected, and overall cost is known much earlier so there is a reduced likelihood of exceeding the budget. The design-builder is also able to select subcontractors much earlier in the process through prequalification, and allow the subs to assist in design.

The amount of paperwork, and time spent reviewing it, was proven to be greatly reduced for the design-build method based on the survey responses. All participants explained that Requests for Information are far fewer since the subcontractors helped in the design phase. They also expressed that Change Orders are almost completely eliminated except for owner changes and unforeseen conditions. Finally the participants agreed that the submittal process is greatly shortened because the specifications are defined with the aid of the subcontractors and are therefore typically met with the first submission.

In regards to being able to work ahead, it can be surmised from the information already discussed that the design-build method is much better than the traditional method. Design-build allows the contractor to begin the procurement process for long lead items much earlier since they are helping choose materials in the design process. Permits can also be purchased earlier since the contractor knows they have been awarded the project before the design is complete. This reduces delays which can often

Page | 45

Construction Management Martinsburg, WV

occur in the permitting process. It is also easier for the subcontractors to plan ahead. Since they are likely to be involved in the design phase, unlike for design-bid-build construction, the means and methods of construction can be decided on sooner. In fact many methods of construction can be considered during the design process in order to improve efficiency in the field. The subcontractors are also able to use their advanced knowledge to schedule their labor force and equipment to be sure delays do not occur in construction.

According to the measurements that were determined and the information that was found, it seems quite obvious that using the design-build delivery method can indeed improve productivity for the management and design teams. It is important to understand and make special note of the repeated theme in this analysis, that the productivity and efficiency of this method is highly dependent on the team that is selected for the project. If the contractor or design team is not knowledgeable of the owner's desires for the project, the design-build method will not be effective. The same result will occur if the owner is unable to express their needs and wants for the project. However, these restrictions are just as important to a successful project with the design-bid-build method. It is the *potential* for efficiency that can be achieved by the two delivery methods that must be compared, and it has been shown that design-build has greater potential.

Page | 46

Construction Management Martinsburg, WV

Appendix A

C-5 Fuel Cell Facility Site Plans of Existing Conditions

Page | 47

Construction Management Martinsburg, WV

Appendix **B**

C-5 Fuel Cell Facility

Site Layout Plans

Page | 48

Construction Management Martinsburg, WV

Appendix C

C-5 Fuel Cell Facility

Project Schedules

Page | 49

ID	Task Name	Duration	Start	Finish	Oct	Nov	Dec	2009	Eab	Mor	Apr	Mov	lun	lul.	Aug	Son	
1	Notice to Proceed	0 days	Wed 10/8/08	Wed 10/8/08	♦ _10/8	INUV	Dec	Jan	Teb	IVIAI	Api	Ividy	Jun	Jui	Aug	Jep	
2	Design Phase	98 days	Wed 10/8/08	Fri 2/20/09	8 📥					2/20							
3	100% Design Document Review	10 days	Mon 2/23/09	Fri 3/6/09					2/23	3/6							
4	Structural Shop Drawings	37 days	Thu 2/26/09	Fri 4/17/09					2/26		4	/17					
5	Office Mobilization	5 days	Tue 3/24/09	Mon 3/30/09						3/24	3/30						
6	Issue Construction Documents	10 days	Wed 3/25/09	Tue 4/7/09						3/25	<u>4/7</u>						\$
7	Initial Layout and Stakeout	3 days	Wed 4/8/09	Fri 4/10/09							4/8 🥤 4/10)					
8	Approve Structural Shop Dwgs	15 days	Thu 4/9/09	Wed 4/29/09							4/9	4/29					
9	Site-Stormwater and Grading for Bldg	36 days	Thu 4/9/09	Thu 5/28/09							4/9		5/28				
10	Fabricate Structural Steel and Joists	49 days	Thu 4/30/09	Tue 7/7/09							4/3	0 👗 🔤		7/7			
11	Construct Foundations	46 days	Mon 4/27/09	Mon 6/29/09							4/27			6/29			
12	Underground Utilities	45 days	Fri 5/29/09	Thu 7/30/09								5/29			 7/30		
13	Steel Erection	30 days	Wed 7/15/09	Tue 8/25/09										7/15		8/25	
14	Construct Roof	21 days	Wed 8/26/09	Wed 9/23/09											8/26	Ľ	<u>}</u> 9/
15	Masonry Walls	15 days	Wed 8/26/09	Tue 9/15/09											8/26		//15
16	Install Insulated Metal Panels	16 days	Wed 9/16/09	Wed 10/7/09												9/16 🎽	
17	Floor Slab	19 days	Thu 9/24/09	Tue 10/20/09												9/24	
18	MEP Rough-In Overhead	32 days	Wed 10/21/09	Thu 12/3/09													
19	Construct Interior Partition Walls	20 days	Wed 10/21/09	Tue 11/17/09													
20	MEP Rough-In in Walls	10 days	Fri 10/23/09	Thu 11/5/09													
21	Site Asphalt and Concrete	34 days	Wed 10/21/09	Mon 12/7/09													
22	Install Hangar Door	24 days	Wed 11/25/09	Mon 12/28/09													
23	Building Enclosed	0 days	Mon 12/28/09	Mon 12/28/09													
24	Complete MEP Systems	24 days	Wed 11/25/09	Mon 12/28/09													
25	Fire Alarm and Security System	43 days	Fri 12/4/09	Tue 2/2/10													
26	Complete Sevice Road- Wearing and Paint	8 days	Tue 12/8/09	Thu 12/17/09													
27	Landscaping	7 days	Fri 12/18/09	Mon 12/28/09													
28	Testing and Commissioning	40 days	Wed 2/3/10	Tue 3/30/10													
29	Project Complete	0 days	Wed 3/31/10	Wed 3/31/10													

Project: C-5 Summary Schedule.mpp Date: Mon 9/28/09	Task Progress	Milestone	<u>♦</u>	Rolled Up Task	Rolled Up Progress	 External Tasks Project Summary
			• •	Page 1	• F	

ID	Task Name	Duration	Start	Finish	Predecessors	2009
		Daration	Clair			Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May .
1	Bidding/Selection Period	157 days	Mon 2/18/08	Tue 9/23/08		
2	Notice to Proceed	0 days	Wed 10/8/08	Wed 10/8/08	1FS+11 days	↓ 10/8
3	Design Phase	98 days	Wed 10/8/08	Fri 2/20/09	2FS-1 day	
4	100% Design Document Review	10 days	Mon 2/23/09	Fri 3/6/09	3	
5	Structural Shop Drawings	50 days	Thu 2/26/09	Wed 5/6/09	4SS+3 days	
6	Office Mobilization	5 davs	Tue 3/24/09	Mon 3/30/09	4FS+11 davs	
7	Issue Construction Documents	10 days	Wed 3/25/09	Tue 4/7/09	6SS+1 day	
8	Initial Lavout and Stakeout	3 days	Wed 4/8/09	Fri 4/10/09	7	
9	Structural Shop Dwg Approval	20 days	Tue 4/28/09	Mon 5/25/09	, 5ES-7 days	
10	Site- Stormwater and Grading for Bldg	20 days	Thu 4/9/09	Thu 5/28/09	899+1 days	
10	Structural Steel Enhricotion	50 days	Tue 5/26/00	Tue 9/4/00	000+1 uay	
11		51 days	Tue 5/26/09	Tue 8/4/09	9	
12	Foundation Construction	62 days	Mon 4/27/09	Tue 7/21/09	10FS-24 days	
13	Caisson Construction	36 days	Mon 4/27/09	Mon 6/15/09	10FS-24 days	
14	Pier Caps & Grade Beams	47 days	Mon 5/18/09	Tue 7/21/09	13SS+15 days	
15	Steel Erection & Detailing	68 days	Tue 8/4/09	Thu 11/5/09	11FS-1 day	
16	Build Trusses on Site- Seq 1A, 1B	10 days	Tue 8/4/09	Mon 8/17/09	11FS-1 day	
17	Build Trusses on Site- Seq 2A, 2B	10 days	Tue 8/18/09	Mon 8/31/09	16	
18	Build Trusses on Site- Seq 3A	7 days	Tue 9/29/09	Wed 10/7/09	17FS+20 days	
19	Build Trusses on Site- Seq 3B	5 days	Thu 10/8/09	Wed 10/14/09	18	
20	Build Trusses on Site- Seg 3C	7 davs	Thu 10/15/09	Fri 10/23/09	19	
21	Frect & Detail- Seg 1A	9 days	Tue 8/18/09	Fri 8/28/09	16	
21	Erect & Detail- Seg 1B	18 days	Wed 8/10/00	Eri 0/11/00	2199±1 day	
22	Erect & Detail- Seq 1D	10 days	Map 0/14/00	Tuo 0/20/00	2100+1 uay	
23	Erect & Detail- Seq 2A	12 days	Non 9/14/09	Tue 9/29/09	22	
24	Erect & Detail- Seq 2B	5 days	Mon 9/28/09	Fri 10/2/09	23FS-2 days	
25	Erect & Detail- Seq 3A	7 days	Thu 10/8/09	Fri 10/16/09	24FS+3 days	
26	Erect & Detail- Seq 3B	5 days	Thu 10/15/09	Wed 10/21/09	25FS-2 days	
27	Erect & Detail- Seq 2C	9 days	Thu 10/22/09	Tue 11/3/09	26	
28	Erect & Detail- Seq 3C	8 days	Tue 10/27/09	Thu 11/5/09	27FS-6 days	
29	Roof Deck Installation	44 days	Mon 9/14/09	Thu 11/12/09	22	
30	Roof Deck- Seq 1A, 1B	2 days	Mon 9/14/09	Tue 9/15/09	22	
31	Roof Deck- Seq 2A, 2B	2 days	Tue 10/6/09	Wed 10/7/09	24FS+1 day	
32	Roof Deck- Seg 3A	5 davs	Mon 10/19/09	Fri 10/23/09	25	
33	Roof Deck- Seg 3B	5 days	Mon 10/26/09	Fri 10/30/09	32	
34	Roof Deck- Seg 2C	5 days	Mon 11/2/09	Fri 11/6/09	33	
35	Roof Deck- Seg 3C	5 days	Eri 11/6/09	Thu 11/12/09	34FS-1 day	
36	Magaphy Wall	12 days	Mon 0/14/00	Wed 11/12/09	22	
27	Masonny Wall	43 uays	Mon 0/14/09	Wed 0/22/00	22	
37	Masonny IA, IB	o uays	Non 10/10/09	Tue 40/27/09	22	
38	Masonry 2A, 2B	7 days	Mon 10/19/09	Tue 10/27/09	25	
39		10 days	1 nu 10/29/09	vved 11/11/09	JSFS+1 day	
40	Insulated Wall Panels	23 days	Mon 10/19/09	Wed 11/18/09	25	
41	Wall Panels 1A, 1B	9 days	Mon 10/19/09	Thu 10/29/09	25	
42	Wall Panels 2A, 2B	8 days	Wed 10/28/09	Fri 11/6/09	41FS-2 days	
43	Clerestory Siding	15 days	Mon 11/2/09	Fri 11/20/09	42FS-5 days	
44	Wall Panels South Elev	6 days	Wed 11/4/09	Wed 11/11/09	43SS+2 days	
45	Wall Panels North Elev	8 days	Mon 11/9/09	Wed 11/18/09	44FS-3 days	
46	Metal Roof Panel Installation	38 davs	Mon 11/23/09	Wed 1/13/10	45FS+2 davs	
47	High Roof Panels	17 davs	Mon 11/23/09	Tue 12/15/09	45FS+2 davs	
48	Admin Area Roof Panels	4 days	Wed 12/2/09	Mon 12/7/00	47FS-10 days	
40	Low Roof Panels	12 days	Wed 12/16/00	Thu 12/31/00	C 10 days	
-+3 50		21 days	Wed 12/16/00	Med 1/12/10	 /7	
50	Guilers & Downspouls		Weg 12/16/09		41	
51	Invajor Equipment & Systems Fabrication	102 days	Wion 6/29/09	Tue 11/1//09		
52	Negadoor Fabrication & Delivery	102 days	Mon 6/29/09	Tue 11/17/09		
53	Oil/Water Separator	16 days	Mon 6/29/09	Mon 7/20/09		
54	Sitework	60 days	Wed 11/4/09	Tue 1/26/10	34FS-3 days	
55	Install Fire Hydrants	5 days	Wed 11/4/09	Tue 11/10/09	34FS-3 days	
56	Install Sanitary Sewer	5 days	Thu 11/5/09	Wed 11/11/09	55SS+1 day	
	· · · · · · · · · · · · · · · · · · ·			Duran		
Project	:: Detailed Project Schedule.mp Task			Progress		Summary V External Lasks Deadline
Date: T	ue 10/27/09 Split			Milestone	•	Project Summary
						Page 1

ID	Task Name	Duration	Start	Finish Predec	essors				2009	
57	Aprop Subdrain	2 dovro	Thu 11/5/00	Mon 11/0/00 5555 1	Feb	Mar Apr May	Jun Jul Aug	Sep Oct	Nov Dec Jan Feb	Mar Apr May
59		5 days	Mon 11/0/09	Mon 11/16/09 5555+	day					
50	Crade/Stope Rese for Aprop	6 days	Tuo 11/10/00	Mon 11/16/00 5955 1	uay					
59	Demostic Water Installation	5 days	Tue 11/10/09	Mon 11/22/00 50	luay					
61	Domestic Water Installation	5 days	Tue 11/17/09	Mon 11/23/09 59						
62		5 days	Tue 11/17/09	Wod 12/2/09 59						
62		7 days	Tue 11/24/09	Wed 12/2/09 01						
64	Install Gas Line	5 days	Thu 12/3/09	Thu 12/9/09 62						
65		6 days	Thu 12/10/09	Thu 12/17/09 63						
66	Communication Ductbank	0 days	Fri 12/18/09	Wed 12/23/09 65						
67		4 days	Fri 12/18/09	Tue 12/29/09 65						
68	Drainage Swales	7 days	Fri 12/18/09	Mon 12/28/09 65						
69	Site Lighting	10 days	Mon 12/28/09	Fri 1/8/10 68FS-1	day					
70	Final Site Grading & Topsoil	13 days	Mon 1/11/10	Wed 1/27/10 69	day					
70	Asphalt Base & Binder	10 days	Mon 1/25/10	Eri 2/5/10 70ES-3	dave					
72	Install Perimeter Fence	5 days	Thu 1/28/10	Wed 2/3/10 70 0 3	days					
73	Asphalt Wearing	4 days	Mon 2/8/10	Thu 2/11/10 71						
74		8 days	Thu 2/11/10	Mon 2/22/10 73ES-1	dav					
75		33 days	Tue 6/23/09	Thu 8/6/09 13FS+F	days					
76	Underground Sanitary Hanger	21 days	Tue 6/23/09	Tue 7/21/09 13ES+5	i davs					
77	Underground Plumbing	12 days	Wed 7/22/09	Thu 8/6/09 76						
78	Underground Electrical	14 dave	Mon 12/21/09	Thu 1/7/10 64FS±1	dav					
79	Electrical Grounding in SOG	14 days	Mon 12/21/09	Thu 1/7/10 64FS+1	day					
80	Slab on Grade	109 days	Mon 9/28/09	Thu 2/25/10 23FS-2	davs					
81	Stone Base Admin Area SOG	6 days	Mon 9/28/09	Mon 10/5/09 23FS-2	days					
82	Prep/Pour Admin Area SOG	17 days	Tue 10/6/09	Wed 10/28/09 81	aayo					
83	Form/Pour B-Line Trench Drain	7 days	Mon 11/16/09	Tue 11/24/09 82FS+1	2 davs					
84	Stone Base Hangar SOG	10 days	Thu 1/21/10	Wed 2/3/10 50FS+5	5 davs					
85	Form/Pour H-Line Trench Drain	5 days	Thu 1/28/10	Wed 2/3/10 84FS-5	davs					
86	Prep/Pour Jacking Points- Part 1	3 days	Tue 2/2/10	Thu 2/4/10 85FS-2	davs					
87	Prep/Pour SOG#1	4 days	Fri 2/5/10	Wed 2/10/10 86						
88	Prep/Pour SOG #2	4 days	Mon 2/8/10	Thu 2/11/10 87FS-3	davs					
89	Prep/Pour SOG #3 (Jacking Points Part 2)	2 days	Fri 2/12/10	Mon 2/15/10 88						
90	Prep/Pour SOG #4	4 days	Tue 2/16/10	Fri 2/19/10 89						
91	Prep/Pour SOG #5	4 days	Mon 2/22/10	Thu 2/25/10 90						
92	Building Finishes- Hangar	81 days	Mon 12/7/09	Mon 3/29/10 48FS-1	day					
93	Overhead Doors	5 days	Mon 12/7/09	Fri 12/11/09 48FS-1	day					
94	MegaDoor Installation	33 days	Wed 12/9/09	Fri 1/22/10 93FS-3	days					
95	GWB/Plywood Roof Sheathing	10 days	Mon 1/4/10	Fri 1/15/10 94FS-1	5 days					
96	Paint GWB/CMU	5 days	Mon 1/18/10	Fri 1/22/10 95						
97	Misc. Metals	5 days	Mon 1/25/10	Fri 1/29/10 96						
98	Paint Structure	20 days	Mon 2/1/10	Fri 2/26/10 97						
99	Paint Pipe Systems	20 days	Mon 2/8/10	Fri 3/5/10 98SS+5	5 days					
100	Hangar Floor Striping	2 days	Fri 3/26/10	Mon 3/29/10 91FS+2	20 days					
101	Mechanical- Hangar	48 days	Mon 11/16/09	Wed 1/20/10 35FS+1	day					
102	Spiral Duct	12 days	Mon 11/16/09	Tue 12/1/09 35FS+1	day					
103	Louvers	11 days	Tue 12/1/09	Tue 12/15/09 102FS-	1 day					
104	Exhaust Fans	11 days	Mon 12/14/09	Mon 12/28/09 103FS-	2 days					
105	Exhaust System	12 days	Mon 1/4/10	Tue 1/19/10 104FS+	-4 days					
106	Ductwork	13 days	Mon 1/4/10	Wed 1/20/10 104FS+	-4 days					
107	Plumbing- Hangar	40 days	Wed 11/25/09	Tue 1/19/10 83						
108	Trench Exhaust	9 days	Wed 11/25/09	Mon 12/7/09 83						
109	Compressed Air Lines	12 days	Tue 12/8/09	Wed 12/23/09 108						
110	Breathable Air	19 days	Tue 12/15/09	Fri 1/8/10 109SS-	⊦5 days					
111	Vent Risers	3 days	Thu 12/17/09	Mon 12/21/09 110SS-	⊦2 days					
112	Domestic Water Piping	21 days	Tue 12/22/09	Tue 1/19/10 111						
Project	t: Detailed Project Schedule mp Task			Progress		Summary	V	External Ta	sks	Deadline
Date: 1	Fue 10/27/09			Milestone 🔺		Project Summany		External Mil	estone	
	Spiit					r roject Summary	•			
							Page 2			
L										

15 House Neuris 2 days The 12226 Wei 1262 2000 [115] The 12226 Wei 1262 2000 [115] The 12126 2000 [115]	ID	Task Name	Duration	Start	Finish	Predecessors		hue hul Aure	Car Oct Nav Day	2009
114 Hendel Hender Dings 27 dagsi Tute Diffstore 115 Hendel Hender Dings 37 dagsi Tute Diffstore 116 Hendel Hender Dings 37 dagsi Tute Diffstore 117 Hendel Hender 37 dagsi Tute Diffstore 118 Hendel Hender 37 dagsi Tute Diffstore 119 Height Hender 37 dagsi Tute Diffstore 110 Height Hender 37 dagsi Tute Diffstore 110 Height Hender 37 dagsi Tute Diffstore 110 Height Hender 37 dagsi Tute Diffstore 111 Height Hender 37 dagsi Tute Diffstore 111 Height Hender 37 dagsi Tute Diffstore 110 Height Hender 37 dagsi Tute Diffstore 111 Height Hender 37 dagsi Tute Diffstore 112 Height Hender 37 dagsi Tute Diffstore 113 Height Hender 37 dagsi Tute Diffstore 114 Height Hender 37 dagsi Tute Diffstore 115 Height Hender 37 dagsi Tute Diffstore 116 Height Hender 37 dagsi Tute Diffstore 117 Height Hender 37 dagsi Tute Diffstore	113	Hose Reels	2 days	Tue 12/22/09	Wed 12/23/09	111	Feb Mar Apr May	Jun Jul Aug	Sep Oct Nov Dec	C Jan Feb Mar Apr May
115 Harval Harva 2 (tax) The 121505 Th 15700 (1178-3 dary) 117 Her protection: Harva 8 (corr Th 1070 (1178-3 dary) 117 Her protection: Harva 8 (corr Th 1070 (1178-3 dary) 117 Her protection: Harva 8 (corr Th 1070 (1178-3 dary) 118 Her and Her protection: Harva 8 (corr Th 1070 (1178-3 dary) 119 FCF Securic And Andrew 7 (corr Th 1070 (1178-3 dary) 110 Her dary Harva 7 (corr Th 1070 (1178-3 dary) 111 Her dary Harva 7 (corr 7 (corr Th 1070 (1178-3 dary) 112 Her dary Harva 7 (corr 7 (corr 7 (corr 7 (corr 113 Her dary Harva 7 (corr 7 (corr 7 (corr 7 (corr 7 (corr 113 Her dary Harva 7 (corr 7	114	Heating- Hangar	27 davs	Tue 12/15/09	Wed 1/20/10	111FS-5 davs	-			
111 Three Proteins 9 may Fri (49) Worl 2020 (1998 3 day) 112 Three Structer Stream 32 day Mon 11400 Three Structer Stream 32 day 113 Three Structer Stream 32 day Mon 11400 Three Structer Stream 32 day 113 Three Structer Stream 32 day Mon 11400 Three Structer Stream 32 day 114 Three Structer Stream 32 day Mon 11400 Three Structer Stream 34 day 113 ExterCas Hanger 74 days Mon 11400 Three Structer Stream 34 day 114 ExterCas Hanger 74 days Mon 11400 Three Structer Struc	115	Infrared Heater Piping	24 days	Tue 12/15/09	Fri 1/15/10	111FS-5 days	-			
177 Fire Potection: Hange 55 days Mon 14990 Fit (1220/0475-3 days) 118 URE System Form 22 days Work (1200/0475-1 days) 118 ELET System Form 22 days Work (1200/0475-1 days) 121 ELET System Form 22 days Work (1200/0475-1 days) 122 Expected - Kann System 22 days Mon 14990 The 1201/04/1475-1 days 123 Expected - Kann System 2 days Mon 14990 The 1201/04/1475-1 days 124 Expected - Kann System 3 days Mon 14990 The 1400/01/0255-1 days 124 Werk System Forms 1 days Men 14990 The 1400/01/0255-1 day 125 Werk System Soland 1 days Men 14990 The 1400/01/0255-1 day 126 Mon 14900 The 1400/01/0551-1 day The 1400/01/0551-1 day 126 Malores - Class Ratin 2 days The 1400/01/0551-1 day 127 Mon 14900 The 1400/01/0551-1 day The 1400/01/0551-1 day 128 Malores - Class Ratin 2 days The 1400/01/0551-1 day 129 Mon 14900 The 1400/01/0501-1 day The 1400/01/0501-1 day	116	Infrared Heaters	9 days	Fri 1/8/10	Wed 1/20/10	115FS-6 days	-			
16 We Spinkar Speam 22 cms No. 11600 Test 22200 (HPS - 3 cms) 10 Her Main 24 cms Wet 22000 Test 2200 (HPS - 3 cms) 10 Her Main Fet 22001 (HPS - 1 cms) Fet 22001 (HPS - 1 cms) 10 Her Main Fet 22001 (HPS - 1 cms) Fet 22001 (HPS - 1 cms) 10 Her Main Fet 22001 (HPS - 1 cms) Fet 22001 (HPS - 1 cms) 12 Her Main Fet 22001 (HPS - 1 cms) Fet 22001 (HPS - 1 cms) 13 Her Main Fet 22001 (HPS - 1 cms) Fet 22001 (HPS - 1 cms) 14 Her Main Fet 22001 (HPS - 1 cms) Fet 22001 (HPS - 1 cms) 15 Min Overhad Door 6 cms Mon 11400 (HPS - 1 cms) Fet 22001 (HPS - 1 cms) 15 Min Overhad Door 10 cms 10 cms Fet 22001 (HPS - 1 cms) Fet 22001 (HPS - 1 cms) 16 Mon Status 10 cms 10 cms Fet 22001 (HPS - 1 cms) Fet 22001 (HPS - 1 cms) 17 Mon Status 6 cms 10 cms Fet 22001 (HPS - 1 cms) Fet 22001 (HPS - 1 cms) 18 Mon Status 6 cms Fet 22001 (HPS - 1 cms) Fet 22001 (HPS - 1 cms) <tr< td=""><td>117</td><td>Fire Protection- Hangar</td><td>55 days</td><td>Mon 11/9/09</td><td>Fri 1/22/10</td><td>44FS-3 days</td><td>-</td><td></td><td></td><td></td></tr<>	117	Fire Protection- Hangar	55 days	Mon 11/9/09	Fri 1/22/10	44FS-3 days	-			
199 ILE Superior Sping 22 days Wei 222008 The 222008 1148-9 for sign 191 ILE Superior Sping 24 days Mon 14400 The 22210 1189-9 for sign 191 ILE Superior Sping 24 days Mon 14400 The 22210 1189-9 for sign 191 ILE Superior Sping 24 days Mon 14400 The 22210 1189-9 for sign 191 ILE Superior Sping 24 days Mon 14400 The 22110 1189-9 for sign 192 Lighting & Enveryment Upting 24 days Mon 14400 The 22110 1189-9 for sign 192 Vire Superior Sping 11 days Mon 14400 The 22110 1189-9 for sign 193 Koho Tays, A Telocome Wireg 21 days Mon 14400 Mon 14400 Mon 14400 193 Koho Tays, A Telocome Wireg 21 days Mon 14400 Mon 14400 </td <td>118</td> <td>Wet Sprinkler System</td> <td>32 days</td> <td>Mon 11/9/09</td> <td>Tue 12/22/09</td> <td>44FS-3 days</td> <td>-</td> <td></td> <td></td> <td></td>	118	Wet Sprinkler System	32 days	Mon 11/9/09	Tue 12/22/09	44FS-3 days	-			
100 Issue Yoan Coerandou 15 days Mon 11400 Fri 102010 11492-1 days 102 Issue Yoan Coerandou 24 days Mon 11400 Fri 102010 11293-04 days 102 Issue Yoan Coerandou 24 days Mon 11400 Fri 102010 11293-04 days 103 Issue Oxin Coerandou 34 days Mon 11400 Fri 102010 11293-04 days 105 Issue Oxin Coerandou 34 days Mon 124000 11293-04 days 105 Issue Oxin Coerandou 34 days Mon 124000 11293-04 days 103 Monroade Dass 34 days Mon 124000 11293-04 days 103 Monroade Dass Statecom 100 days Mon 124000 11293-04 days 103 Monroade Dass Statecom 30 days Mon 124000 11293-04 days 103 Galachas, Paus, etc. 4 days Mon 124000 11293-04 days 103 Galachas, Paus, etc. 5 days The 102000 11493-04 days 103 Monroade Dass Statecom Mon 121000 11293-04 days 103 Marconade Statecom 6 days Fri 102100 11493-04 days 103 Marconade Dass Statecom Mon 121000 11291-01 1149 Mon 121000 11291-01 1149 103 </td <td>119</td> <td>HEF System Piping</td> <td>22 davs</td> <td>Wed 12/2/09</td> <td>Thu 12/31/09</td> <td>118FS-15 davs</td> <td>-</td> <td></td> <td></td> <td></td>	119	HEF System Piping	22 davs	Wed 12/2/09	Thu 12/31/09	118FS-15 davs	-			
121 Executes Hangar 24 days Mon 11900 The 2470 4078-3 days 123 Het na Fin A Jurn System 34 days Mon 11900 The 2490 4175 days 123 Het na Fin A Jurn System 34 days Mon 11900 The 2490 4175 days 124 Het na Fin A Jurn System 34 days Mon 11900 The 2490 4175 days 124 Het na Fin A Jurn System 35 days Fin 19900 The 2490 4175 days 125 West NAC Tugs System 13 days Fine 19900 The 2490 4175 days days 126 West NAC Tugs System 13 days Fine 19900 The 2490 1175 days 127 West NAC Tugs System 13 days Fine 19900 The 2490 1175 days 128 West NAC Tugs System 13 days Fine 19900 The 2490 1197 days 129 Switzen, Jurn State 6 days Fine 19900 The 2490 1197 days 129 Switzen, Jurn State 6 day Fine 19900 The 2490 1197 days 139 Marrinan Smoother 5 day Fine 19900 The 2490 1197 days 138 Marrinan Smoother 5 day Fine 19900 The 2490 1197 days 139 Awarrinan Smoother 5 day Fine 19900 The 2490 1197 days 139 Awarrinan Smo	120	Install Foam Generators	15 davs	Mon 1/4/10	Fri 1/22/10	119FS+1 dav	-			
1921 Magnator Foxar 94 arage Not 101000 The 20100 12455 days 1821 Lighing & Envergency Lighting 0 days Not 111000 The 20100 12455 days 1821 Lighing & Envergency Lighting 0 days Not 112000 The 115010 The 115010 1821 Lighing & Envergency Lighting 0 days Not 112000 The 115010 The 115010 1821 Viet Volcans 15 days The 115010 The 115010 The 115010 1821 Viet Volcans 15 days The 12000 The 12000 The 12000 1821 Viet Volcans 15 days The 12000 The 12000 The 12000 The 12000 1831 Montaria Nano 5 day The 12000 The 12000 The 12000 The 12000 1831 Murrum Storbior 5 day The 12000 The 12000 The 12000 The 12000 1831 Murrum Storbior 5 day The 12000 The 12000 The 12000 The 12000 1831 Murrum Storbior 5 day The 12000 The 12000 The 12000 The 12000 The 12000 The 12000 The 120	121	Electrical- Hangar	74 davs	Mon 11/9/09	Thu 2/18/10	44FS-3 davs	-			
123 LUE and Fine Adum System 34 days Mont 12:2050 The 12:2012:2255-3 days 124 Lyting S G days Mon 12:706 Mon 12:706 <td>122</td> <td>Megadoor Power</td> <td>24 days</td> <td>Mon 11/9/09</td> <td>Thu 12/10/09</td> <td>44FS-3 days</td> <td>-</td> <td></td> <td></td> <td></td>	122	Megadoor Power	24 days	Mon 11/9/09	Thu 12/10/09	44FS-3 days	-			
1241 Lyding & Enregency Lyding 40 days Mol 12/06 (1235)-54 days 128 Exactic Calle 33 days Fri 11/101/1235)-54 days 128 Exactic Calle 33 days Fri 11/101/1235)-54 days 128 Exactic Calle 13 days Fri 11/101/1235)-14 days 128 Exactic Calle 13 days Fri 11/101/1235)-14 days 129 Exactic Calle 13 days Fri 11/101/1235)-14 days 131 Calle Trays, & Telecomm Wing 21 days Fri 11/101/1235)-14 days 131 Calle Trays, & Telecomm Wing 22 days Mon 12/07/00 Jar85-14 days 133 Calle Trays, & Telecomm Wing 22 days Mon 12/07/00 Jar85-14 days 133 Calle Trays, & Telecomm Wing 22 days Mon 12/07/00 Jar85-14 days 134 Calle Trays, & Telecomm Wing 22 days The 11/20/00 Jar85-14 day 135 Calle Trays, & Telecomm Wing 22 days The 11/20/00 Jar85-14 day 136 Numinum Farmers(Ming 5 days The 12/00 Jar85-14 day 137 Coll Calle Darma, Mon 12/00 Jar85-14 day Mon 12/00 Jar85-14 day 138 Calemani Tile 5 days Mon 12/	123	HEF and Fire Alarm System	34 days	Mon 11/16/09	Thu 12/31/09	122SS+5 days				
105 Unit Contract Doors 0.05g Mon 12/4001/02/85-4.dags 106 Hort: Colon 3.05g Mon 12/4001/02/85-4.dags 107 Wite HVAC Hoop System 10.05g Mon 12/4001/02/85-4.dags 108 Mite HVAC Hoop System 10.05g Mon 12/4001/02/85-4.dags 109 Mite HVAC Hoop System 10.05g Mon 12/4001/02/85-4.dags 109 Mite HVAC Hoop System 21.05g The 12/2001/02/85-4.dags 109 Mite HVAC SystemAs Mites 21.05g The 12/2001/02/85-4.dags 109 Mon Mon 20/100 Mon 12/4001/02/85-4.dags Mon 12/4001/02/85-4.dags 119 Montinue Mandes-Admin Area 5.05g The 12/2001/03/85-6.10g 119 Montinue Mandes-Admin Area 5.05g The 12/2001/03/85-6.00g 119 Montinue Mandes-Admin Area 5.05g The 22/201/03/85-6.00g 119 Montinue Mandes/Admin Area 5.05g The 22/201/03/85 119 Montinue Mandes/Admin Area 5.05g The 22/201/03/85 119 Montinue Mandes/Admin Area 5.05g The 22/201/03/85 Mon 12/80/81/81	124	Lighting & Emergency Lighting	40 days	Mon 11/23/09	Fri 1/15/10	123SS+5 days	-			
128 Euclaid Calie 33 days F1 (21806) Tue 2010 (2875-3 days 129 Wie HVAC Purgs System 13 days Tue 202000 The 1370 (2755-1 day) 129 Wie HVAC Purgs System 23 days Tue 202000 The 1270 (2755-1 day) 129 Wie HVAC Purgs System 23 days Tue 122000 The 1270 (2755-1 day) 120 Mich Stade Stade 23 days Tue 122000 The 1270 (2755-1 day) 120 Mich Stade Stade Stade 23 days Tue 122000 The 1270 (2755-1 day) 121 Mich Stade Stade Stade 23 days Tue 122000 The 1270 (2755-1 day) 123 Batting Finitaber Admin Are 6 days Mol 1200 (475-5 day) Tue 1270 (175-5 day) 123 Batting Finitaber Admin Are 5 days Tue 1270 (175-5 day) Tue 1270 (175-5 day) 124 HMA Finitaber Stade Stade 5 days Tue 1270 (175-5 day) Tue 1270 (175-5 day) 124 HMA Finitaber Stade Stade 5 days Tue 1270 (175-5 day) Tue 1270 (175-5 day) 124 Tube Attitions Stade Stade 5 days Tue 1270 (175-5 day) Tue 1270 (175-5 day) 124 Bacade La	125	Wire Overhead Doors	6 days	Mon 12/7/09	Mon 12/14/09	122FS-4 days				
127 Wuch HVAC Huan Renks 10. days More 114/20 Prop System 10. days More 114/20 Prop System 128 Wuch HVAC Bugment Wing 21. days Much HVAC Bugment Wing 20. days Much HVAC Bugment Wing Much HVAC Bugment Win	126	Electric Cable	33 days	Fri 12/18/09	Tue 2/2/10	125FS+3 days				
128 Wike HVAC Puge system 13 days Use 122800 The 127010127553 days 130 Montron Honso & Calina Routs 20 days Work 16710 The 227010127553 days 131 Building Frags.edu 4 days Mon 215010 The 227010127553 days 132 Building Frags.edu 4 days Mon 12800 dass+4 days Mon 12800 dass+4 days 133 Building Frags.edu 5 days The 127010 28554 day Mon 12800 dass+4 days 134 HA Frames 5 days The 127010 2855 days Mon 12800 dass+4 days 137 Covid Delings 5 days The 127010 138 Fig 42701 138 136 Fig 4280 days Fig 42701 138 Fig 4280 days Fig 42701 138 139 Doors A Hardward 5 days The 22700 138 Fig 42701 138 141 Doors A Hardward 5 days The 22700 138 Fig 42700 438 142 Tower Frainburd/Specialize 5 days The 22700 1270 438 Fig 42700 438 142 Tower Frainburd/Specialize 5 days The 22700 43854 days Mon 12200 448 143 Doors A Hardward 5 days Mon 12200 448 <td< td=""><td>127</td><td>Wire HVAC Hose Reels</td><td>10 days</td><td>Mon 12/28/09</td><td>Fri 1/8/10</td><td>123FS-4 days</td><td></td><td></td><td></td><td></td></td<>	127	Wire HVAC Hose Reels	10 days	Mon 12/28/09	Fri 1/8/10	123FS-4 days				
128 MvAC Equipment Wing 21 days Te 122800 Tue 122810 12785-1 day 131 Cable Tays & Teeconm Wing 20 days Mon 11/870 FT 121210 12875-1 day 133 Cable Tays & Teeconm Wing 20 days Mon 11/870 FT 121210 12875-1 day 133 Building Finitabes - Admin Area 30 days Tm 10/2000 Wes1 1/00 2876-1 day 134 Multimum FerrersGlass 5 days Tm 10/2000 Wes1 1/00 2876-1 day 136 Aluminum FerrersGlass 5 days Tm 12/2000 Wes1 1/00 2876-1 day 137 Ovel Celling 6 days Mon 27610 Tm 12/210 12875-1 days 137 Ovel Celling 6 days Mon 27610 Tm 12/210 12875-1 days 138 Auminum FerrersGlass 6 days Mon 27610 Tm 12/210 12875-1 days 137 Ovel Celling 6 days Mon 27610 Tm 12/210 12800 487 139 Accountie Main Order Similons/Spontabis	128	Wire HVAC Purge System	13 days	Tue 12/29/09	Thu 1/14/10	127SS+1 day				
130 Makotada Nao & Calaba Reels 20 days We 11/91/0 Tu 22/01 (2778-3 days) 131 Cabel Tays & Telecontmi Wing 20 days Mon 21/91/0 File 21/21/01/2878-1 days 132 Switches, Pugs, etc. 4 days Mon 21/91/0 The 21/91/01/2878-1 days 133 Building Finishes-Antini Area 5 days Tu 10/2000 Won 31/21/00 2878-1 day 134 Huñ Finishes-Antini Area 5 days Tu 10/2000 Won 31/21/00 2878-1 day 135 Aurimum Finishes-Antini Area 5 days The 10/200 2878-1 day 136 Aurimum Finishes-Antini Area 5 days The 10/200 2878-1 day 137 Aurimum Finishes-Antini Area 5 days The 12/2010 138 138 Aurimum Storeform 5 days Mon 22010 Fili 12/2004 139 Acoustical Ord 5 days Mon 22010 The 22010 Mon 22010 141 Lockers 5 days Mon 22010 The 22010 Mon 22010 143 Boords Attrabus 5 days Mon 12200 Mon 12200 Mon 12200 144	129	HVAC Equipment Wiring	21 days	Tue 12/29/09	Tue 1/26/10	127SS+1 day				
131 Cable Trays & Telecomm Winng 20 days Mon /11010 F12/12/10 (28/54 day) 132 Suddiay Finishes- Admin Area 93 days Thu 107/2009 Mon /11010 Thu 21/2100 38/54 day 133 Building Finishes- Admin Area 93 days Thu 107/2009 Mon /11010 Thu 107/2009 134 Hul Finames 5 days Thu 107/2009 Mon /11010 Thu 12/100 48/54 5 days 135 Aluminum Frames/Glass 5 days Thu 12/100 48/54 5 days Thu 12/101 03/67 14 days 137 GVAD Cellings 5 days Thu 12/101 03/67 14 days Thu 12/101 03/67 14 days 138 Aluminum Frames/Glass 5 days Thu 12/101 03/67 14 days Thu 12/101 03/67 14 days 139 Accouncul Crid 5 days Thu 22/01 03/67 17 12/210 13/6 Thu 12/101 03/67 14 days 140 Cecamo Tiele 6 days Thu 12/200 Thu 22/200 Mar 21/01 3/6 Thu 12/101 03/67 14 days 141 Holeshanica- Admin Area 6 days Thu 12/200 Mar 21/01 3/67 14 days 142 Louxoor 15 days Thu 12/200 Mar 21/01 3/67 14 days 144 Bechanica- Amin Area 4 days Mon 11/2009 Thu 22/200 Mar 21/01 3/67 14 days </td <td>130</td> <td>Motorized Hose & Cable Reels</td> <td>20 days</td> <td>Wed 1/6/10</td> <td>Tue 2/2/10</td> <td>127FS-3 days</td> <td></td> <td></td> <td></td> <td></td>	130	Motorized Hose & Cable Reels	20 days	Wed 1/6/10	Tue 2/2/10	127FS-3 days				
132 Switcher, Plugs, ec. 4 days Mon 2/15/10 To 2/18/10 To 2/18/10 133 Bulldor, Finishes Admin Aca 5 days To 10/20/00 Won 2/15/10 To 12/15/10	131	Cable Trays & Telecomm Wiring	20 days	Mon 1/18/10	Fri 2/12/10	128FS+1 day	1			
133 Building Finitanes Amini Area 93 days Thu 10/2006 Mon 30/10/38F3-1 day 136 Auminum Frames/class 6 days Thu 10/2006 Weil 11/400/38F3-1 day 136 Auminum Frames/class 6 days Thu 10/2006 Weil 11/400/38F3-1 day 137 GVR Cellings 6 days Thu 12/200 Fil 12/2010 Fil 12/2010 137 GVR Cellings 6 days Thu 12/2010 Fil 12/2010 Fil 12/2010 138 Pauc CMU WaleQVR Cellings 5 days Mon 20/10 13/7 Fil 22/2010 Fil 12/2010 139 Accusatical Grid 5 days Mon 20/10 13/7 Fil 22/2010 Fil 22/2010 Fil 12/2010 141 Lockers 5 days Thu 2/11/01 13/20 Fil 11/20200 Fil 12/2010/13/2 Fil 12/2010/13/2 142 Toilaf Pauticouxis/Specialize 3 days Thu 2/11/01 14/7 Thu 2/11/01 14/7 Fil 12/2010/13/2 144 Doursok 15 days Mon 11/2200 Fil 12/200/13/2 Thu 2/11/01 14/7 Fil 12/200/13/2 145 Doursok Umar Pymg S days Mon 11/2200 Fil 12/200/13/2 Thu 2/11/01 14/7 Fil 12/200/13/2	132	Switches, Plugs, etc.	4 days	Mon 2/15/10	Thu 2/18/10	131	1			
134 HWA Frames 5 days The 10.22009 Wed 114000387541 days 135 Aurinium Stantform 5 days The 175400 The 1724100 Stays 137 GVB Collings 6 days Fit 125100 The 1724101 335 Fit 125101 138 Paint CMU ValuaCVB Collings 5 days Mon 21210 Fit 122010 Fit 122010 Fit 122010 138 Paint CMU ValuaCVB Collings 5 days Mon 21210 Fit 122010 Fit 12200 Mon 217010 Fit 12200 Fit 12200 Mon 217010 Mon 117010	133	Building Finishes- Admin Area	93 days	Thu 10/29/09	Mon 3/8/10	38FS+1 day	1			
137 Auminum Framewölkins 5 days Fut 12100/9487-54 days 138 Auminum Stonetoni 5 days Fut 1750 Thu 1710/1387-54 days 137 OWB Cellings 6 days Fut 122100 [387-54 days 138 Paint CM Valle(WE Cellings) 6 days Fut 122100 [387-54 days 138 Paint CM Valle(WE Cellings) 6 days Fut 122100 [387-54 days 138 Paint CM Valle(WE Cellings) 6 days Fut 122100 [387-54 days 138 Paint CM Valle(WE Cellings) 6 days Fut 122100 [387-54 days 141 Locknes 6 days Fut 122100 [We 224400 [442 142 Toile Partitions@pacinates 6 days Fut 122200 [We 224700 [432 144 Decons & Hardware 6 days Fut 122200 [We 224700 [432 144 Bechanic Admin Area 6 days Mon 122300 [We 128700 [43 145 Louwers 5 days Mon 22100 [453 148 Enaust System 7 days Tu 21870 [430 159 Puter Bing 6 days Mon 122300 [140 [453 158 Point Paing 6 days Mon 122300 [140 [453 159	134	HM Frames	5 days	Thu 10/29/09	Wed 11/4/09	38FS+1 day	1			
139 Aumnum Storfordi 5 days Fri 115700 Thu 121700 1378-F18 days 137 GWS Cellings 5 days Mar 21170 Fri 122700	135	Aluminum Frames/Glass	5 days	Tue 12/15/09	Mon 12/21/09	48FS+5 days				
137 OVND Collings 6 days Fri 1/22/10 [78] 138 Paint CMU Validic/WC Collings 5 days Mon 28/10 [Fi 22/210] [78] 139 Accumatical Critit 5 days Mon 28/10 [Fi 22/210] [78] 141 Lackers 5 days Mon 28/10 [Walic/WC Collings] 5 days 141 Lackers 5 days Mon 28/10 [Walic/WC Collings] 5 days 143 Daora & Hardware 5 days Mon 28/10 [Valic/WC Collings] 5 days 144 Lackers 5 days Mon 18/200 [Fi 1/12/200] [Valic/WC Collings] 5 days 144 Bechanics-Admin Area 6 days Mon 18/200 [Fi 1/12/200] [Valic/WC Collings] 5 days 145 Dourbootk 15 days Tute 12/200 [S di 1/2/200] [Valic/WC Collings] 5 days 146 Bechanics-Admin Area 45 days Won 12/200 [Valic/WC Collings] 5 days 147 Exhaust Faris 3 days Tut 17/10 Mon 12/200 [Valic/WC Collings] 5 days 148 Exhaust Faris 3 days Won 12/2000 [Valic/WC Collings] 5 days Won 12/2000 [Valic/WC Collings] 5 days 159 Plumbing-Admin Area 45 days <td>136</td> <td>Aluminum Storefront</td> <td>5 days</td> <td>Fri 1/15/10</td> <td>Thu 1/21/10</td> <td>135FS+18 days</td> <td></td> <td></td> <td></td> <td></td>	136	Aluminum Storefront	5 days	Fri 1/15/10	Thu 1/21/10	135FS+18 days				
138 Point CMU Walk/SWB Cellings 5 days Mon. 21/10 Fri 25/10 [137 138 Accuasical Grid 5 days Mon. 28/10 Fri 25/10 [137 140 Ceramic Tile 8 days Mon. 28/10 Fri 21/10 [138 141 Lockers 5 days Mon. 28/10 Fri 21/21/01 [38 142 Toller Pantlion/Specialities 3 days Thu 22/21/01 [43 Horiza 21/10 Mon. 31/10/141 143 Doores 5 days Mon. 31/10/141 Horiza 21/10 Mon. 31/10/141 144 Mechanical- Admin Area 6 days Mon. 11/2200 P Thu 22/21/01 [43 Horiza 21/200 Mon. 31/10/141 145 Ductwork 15 days Thu 12/200 P Mon. 31/200 [44 Horiza 20/10 Horiza 22/00 Horiza 1/200 [44 146 Ductwork 15 days Thu 12/200 P Thu 22/200 Horiza 1/200 [45/10] Horiza 22/00 [45/200 [45/200 [45/10] Horiza 22/00 [45/200 [45/10] 147 Dertines 6 days Thu 11/200 [15/10] Thu 12/200 [45/200 [137	GWB Ceilings	6 days	Fri 1/22/10	Fri 1/29/10	136	-			
133 Accuasical Grid 5 days Mon 2810 06 21710138 141 Lockers 5 days Mon 2810 06 217101038 141 Lockers 5 days Mon 2810 06 217101038 143 Lockers 5 days Mon 2810 06 217101038 144 Lockers 5 days Mon 2810 06 21710103 145 Lockers 5 days Mon 2810104 16 301104 146 Decomes Hardware 5 days Mon 38101042 16 days 147 Bechauch System 7 days Tue 122000 Fit 12200048 148 Exhaust System 7 days Tue 122000 Mon 21101 142 148 Exhaust System 7 days Tue 122000 Tue 1220004855-days 150 Plumbing Admin Ara 4 days Mon 211110163 Tue 1220004855-days 152 Domesite/ Mater Pping 9 days Word 112200 Tue 1220004855-days 153 Gas Lines 6 days Word 112200 Tue 1220004855-days 153 Gas Lines 6 days Word 112200 Tue 1220004855-days 154	138	Paint CMU Walls/GWB Ceilings	5 days	Mon 2/1/10	Fri 2/5/10	137	-			
140 Coramic Tile 8 days Mon 2/k10 Wed 2/X10/138 141 Lockers 5 days Thu 2/k10 Won 3/k10/142 142 Doors 8 days Thu 2/k210 Mon 3/k10/142 143 Doors Rardware 6 days Mon 3/k10/142 144 Mechanical-Admin Area 6 days Mon 1/12200 Thu 2/k10/143 145 Louwers 5 days Mon 1/12200 Thu 2/k10/143 146 Louwers 5 days Mon 1/12200 Thu 2/k10/143 147 Exhaust System 7 days Tru 1/2200/144 Thu 2/k10/143 148 Exhaust System 7 days Tru 1/2200/143555 days Tru 2/k10/143 148 Exhaust System 6 days Wed 1/k10/1131 Tru 2/k10/133 159 Pumbing-Admin Area 6 days Wed 1/k10/1133 Tru 2/k10/153 152 Doneside Valuer Pleing 9 days Wed 1/k110/1133 Tru 2/k10/153 155 Pumbing-Fabures 6 days Wed 1/k10/10 (52F5+1 day) 158 Pumbing-Fabures 6 days Mon 1/k10/16152 158	139	Acoustical Grid	5 days	Mon 2/8/10	Fri 2/12/10	138	-			
141 Lockers 5 days Thu 2/14/10 Wed 2/24/01/40 142 Toile Partimos/Specializetimos/	140	Ceramic Tile	8 days	Mon 2/8/10	Wed 2/17/10	138	1			
142 Totale PartitionsSpecialies 3 days Thu 228/10 Mon 34/10/141 143 Mochanical-Admin Area 64 days Mon 34/10/142 144 Mochanical-Admin Area 64 days Mon 34/10/142 145 Mochanical-Admin Area 64 days Mon 34/20142 146 Ductwork 15 days Tun 228/00 43 147 Exhaust System 7 days Tue 1228/00 Mon 11/23/00 148 Exhaust System 7 days Tue 1228/00 Mon 11/11/10/147 148 Exhaust Fanc 6 days Mon 21/10/10/147 148 Exhaust Fanc 6 days Wed 12/23/09 Tue 12/28/00 4385-5 days 150 Puenting-Admin Area 6 days Wed 12/23/09 Mon 11/11/10/153 152 Doneskit Water Pining 9 days Wed 13/20/00 Wed 13/20/01 153 Gas Lines 6 days Wed 13/20/01 Tue 2/29/00 140 154 Depring Fauros 4 days Mon 12/21/09 Fri 12/9/10 152/5-1 day 156 Pipe Insulation 5 days Wed 13/20/01 Tue 2/29/00 140 157 Heating-Admin Area 17 days <td>141</td> <td>Lockers</td> <td>5 days</td> <td>Thu 2/18/10</td> <td>Wed 2/24/10</td> <td>140</td> <td>1</td> <td></td> <td></td> <td></td>	141	Lockers	5 days	Thu 2/18/10	Wed 2/24/10	140	1			
143 Doors & Hardware 5 days Tu 3/2/10 Mon 3/2/00 144 Mochanica - Admin Area 6 days Mon 1/2/200 Fin 1/2/06/43 146 Lowers 6 days Mon 1/2/200 Fin 1/2/06/43 146 Lowers 15 days Tue 1/2/06/43 Fin 1/2/06/43 146 Ductwork 15 days Tue 1/2/06/43 Fin 1/2/06/43 147 Exhaust Fans 3 days Tue 1/2/200/46 Fin 1/2/06/43 148 Exhaust Fans 3 days Tue 1/2/200/48/S54 days Fin 1/2/06/13/9 150 Plumbing - Admin Area 45 days Wed 1/2/200/10 Tue 1/2/200/48/S54 days 151 Verint Risers 6 days Thu 1/2/10/10 Tue 1/2/200/48/S54 days 152 Donessic Water Piping 9 days Wed 1/2/200/10 Tue 1/2/200/48/S54 days 153 Gas Lines 6 days Thu 1/2/10/10 Tue 1/2/200/48/S54 days 153 Page Insulation 10 days Fin 1/12/10 Tue 1/2/200/48/S54 days 154 Heating- Admin Area 17 days Wed 1/12/10 Tue 1/2/200/48/S54 days 156 Piping </td <td>142</td> <td>Toilet Partitions/Specialties</td> <td>3 days</td> <td>Thu 2/25/10</td> <td>Mon 3/1/10</td> <td>141</td> <td>1</td> <td></td> <td></td> <td></td>	142	Toilet Partitions/Specialties	3 days	Thu 2/25/10	Mon 3/1/10	141	1			
144 Mochanical-Admin Area 64 days Mon 11/2309 Thu 21/81/0 43 145 Louvers 5 days Mon 11/2309 Fini 1/27/09 43 146 Ductwork 15 days Tue 12/809 Mon 12/28/09 43 147 Exhaus System 7 days Tue 12/809 Mon 12/28/09 43 147 Exhaus System 7 days Tue 12/809 Mon 12/28/09 43 148 Exhaus System 7 days Tue 12/809 Mon 12/28/09 43 147 Exhaus System 7 days Tue 12/809 Mon 11/10/147 148 Exhaus Fans 4 days Mon 11/10/147 149 Register/Grilles/Diffusers 4 days Mon 11/11/01167 150 Pumbing Admin Area 6 days Mon 11/11/01151 151 Varn Risers 6 days Mon 11/11/01154 153 Gaa Lines 6 days Mon 11/21/01 Tue 22/301/01 154 Compressed ArLines 6 days Mon 11/21/01 Tue 22/301/01 155 Pie Insulation 10 days Mon 12/21/01 Tue 22/301/01 157 Heating Admin Area 17 days<	143	Doors & Hardware	5 days	Tue 3/2/10	Mon 3/8/10	142				
146 Louvers 5 days Mon 11/2200 Fri 11/2709/43 146 Ductworh 15 days Tue 12/2909 We1 1/8/10/146 147 Exhaust Fans 3 days Tue 12/2909 We1 1/8/10/146 148 Exhaust Fans 3 days Tue 1/2/09 We1 1/8/10/146 148 Exhaust Fans 3 days Mon 2/5/10 Tue 2/23/0 150 Plumbing- Admin Area 45 days We1 2/23/09 Tue 2/23/0 151 Vent Risers 5 days We1 2/23/09 Tue 2/23/0 152 Demesic Water Piping 6 days We1 2/23/09 Tue 2/23/0 153 Denesic Water Piping 6 days We1 2/23/09 Tue 1/24/10 154 Compressed Air Linas 6 days Tue 1/14/10 Tue 1/14/10 156 Pipe Insulation 10 days Thu 1/24/10 Tue 2/24/0 157 Heating-Admin Area 15 days Mon 2/15/10 True 1/14/10 158 Pipe Insulation 5 days Mon 2/15/10 True 2/24/0 158 File Protection-Admin Area 15 days Mon 2/21/00 Fri 2/19/10/1	144	Mechanical- Admin Area	64 days	Mon 11/23/09	Thu 2/18/10	43	1			
146 Ductwork 15 days Tue 12/8009 Mon 12/28/09/48 147 Exhaust System 7 days Tue 12/8009 Wot 16/01/46 148 Exhaust Spatem 7 days Tue 12/8009 Wot 16/01/46 148 Exhaust Fans 3 days Thu 17/10 Mon 11/10/10 147 148 Registers/Gilles/Diffusers 4 days Mon 21/5/10 Thu 21/8/10/139 159 Puembing-Admin Area 45 days Wot 12/2009 Tue 21/28/10/40858-5 days 151 Vent Rilers 5 days Wot 12/2009 Mon 11/10/10 151 152 Domesulvator Piping 9 days Thu 17/10 Thu 21/8/10/153 154 Compressed Air Lines 6 days Wot 11/28/10 [154 157 Hoating-Admin Area 17 days Tue 21/8/10 Tue 22/3/10/140 158 Pipe Insulation 10 days Wot 11/3/10 Tue 21/8/10 [158 Tue 12/8/10 159 Pipe Insulation 5 days Wot 11/3/10 Tue 21/8/10 [158/547 days 161 Sprinker Piping 13 days Mon 12/2/109 Fri 12/19/10 [157/547 days 162 Sprinker Piping<	145	Louvers	5 days	Mon 11/23/09	Fri 11/27/09	43				
147 Exhaust System 7 days Tue 12/23/09 Wed 1/k1/0146 148 Exhaust Fans 3 days Thu 17/10 Mon 111/10 147 148 Exhaust Fans 3 days Thu 17/10 Mon 111/10 147 148 Exhaust Fans 4 days Mon 2116/10 Thu 2/18/10 (139 150 Plumbing- Admin Area 45 days Wed 12/23/09 Tue 2223/10 4958-55 days 151 Vent Risers 5 days Wed 12/23/09 Won 11/1/10 (151 153 Gas Lines 6 days Wed 12/23/09 Won 11/1/10 (151 154 Compressed Air Lines 6 days Thu 11/1/10 (151 156 Pinubing Fixtures 4 days Thu 21/10 (154 156 Pinubing Fixtures 4 days Thu 21/10 (152/55+1 day 157 Heating- Admin Area 17 days Wed 11/3/10 158 Pise Insulation 5 days Mon 12/21/09 Fri 12/91/0 1459 159 Pie Insulation 5 days Mon 12/21/09 Fri 12/91/0 4593-33 days 160 Fire Protection- Admin Area 45 days Mon 12/21/09 Fri 21/91/0 4393-33 days	146	Ductwork	15 days	Tue 12/8/09	Mon 12/28/09	48				
148 Exhaust Fans 3 days Thu 17/10 Mon 1111/10/147 149 Registers/Grilles/Diffuers 4 days Mon 215/10 Thu 228/10/182845 days 150 Plumbing-Admin Area 45 days Wed 122209 Tue 229/10/485845 days 151 Vent Risers 5 days Wed 122209 Tue 229/10/485845 days 152 Domeskic Water Piping 9 days Wed 122009 Wed 111/10/161 153 Gas Lines 6 days Wed 12/2009 Wed 11/161 154 Compressed Air Lines 6 days Thu 27/8/10 Tue 2221/01/442 155 Pipe Insulation 10 days Fit 11/10/1152 Tue 2221/01/440 157 Heating-Admin Area 17 days Wed 11/310 Tue 11/91/01/52/FS+1 day 158 Heat Piping 5 days Mon 12/21/09 Fit 2/91/01/49/SF-37 days 160 Fite Protection-Admin Area 45 days Mon 12/21/09 Fit 3/91/01/48 161 Sprinkler Piping 13 days Mon 12/21/09 Fit 3/91/01/48 Mon 12/21/09 163 Electrical-Admin Area 17 days Mon 12/21/09 Mon 12/21/09 Fit	147	Exhaust System	7 days	Tue 12/29/09	Wed 1/6/10	146				
143 Registers/Grilles/Diffusers 4 days Mon 2/16/10 Thu 2/18/10/139 150 Plumbing-Admin Area 45 days Wedt 12/23/09 Tue 12/29/09 49SS+5 days 151 Vent Risers 5 days Wedt 12/23/09 Mon 1/11/10/151 153 Gas Lines 6 days Wed 12/23/09 Mon 1/11/10/151 154 Compressed Air Lines 6 days Thu 1/11/10 Thu 1/11/10/153 156 Pipe Insulation 10 days Fit 1/15/10 Thu 1/28/10/154 156 Pipe Insulation 10 days Fit 1/19/10 Thu 2/18/10 Thu 2/18/10 157 Heating-Admin Area 17 days Wed 1/13/10 Thu 2/18/10 Thu 2/18/10 157 Heating-Admin Area 17 days Wed 1/13/10 Thu 2/18/10 Thu 2/18/10 158 Heat Piping 5 days Mon 12/21/09 Wed 1/23/09 Heating-Admin Area 161 Sprinkler Heads 5 days Mon 2/21/09 Wed 1/23/09 Heating-Adays 162 Sprinkler Piping 13 days Mon 12/21/09 Wed 1/23/09 Heating-Adays 163 Electrical-Admin Area<	148	Exhaust Fans	3 days	Thu 1/7/10	Mon 1/11/10	147	-			
150 Plumbing-Admin Area 45 days Wed 122309 Tue 222909 4858+5 days 151 Vent Risers 5 days Wed 122309 Wed 122309 Wed 123009 152 Domestic Water Piping 9 days Wed 1223009 Wed 123009 Wed 123009 153 Gas Lines 6 days Wed 1223009 Wed 123009 Wed 123009 154 Compressed Air Lines 6 days Wed 123009 Wed 123009 Wed 123009 155 Pipe Insulation 10 days Fri 1/15/10 Thu 1/28/10 154 156 Pipe Insulation 10 days Fri 1/15/10 Thu 2/28/10 15278-11 day 157 Heating- Admin Area 17 days Wed 1/13/10 Thu 2/19/10 15278-11 day 157 Heating- Admin Area 15 days Mol 1/22/109 Fri 1/29/10 158 Heat Piping 5 days Mol 1/22/109 Fri 1/29/10 49858-3 days 161 Sprinkler Heads 5 days Mol 1/22/109 Fri 2/19/10 4985-4 days 163 Beetrical- Admin Area 74 days Tue 12/809 Wed 1/22/309 4154 164 Conduit Rough-In 12 days Mol 1/2/	149	Registers/Grilles/Diffusers	4 days	Mon 2/15/10	Thu 2/18/10	139	-			
151 Vent Risers 5 days Wed 12/23/09 Tue 12/29/09 Wed 12/30/09 Mon 1/1/1/10 151 153 Gas Lines 6 days Wed 12/30/09 Wed 1/6/10 151 154 Compressed Air Lines 6 days Thu 1/7/10 Thu 1/1/10 153 155 Pipe Insulation 10 days Fri 1/15/10 Thu 1/2/2010 154 156 Pipe Insulation 10 days Fri 1/15/10 Thu 1/2/2010 152FS+1 day 156 Pipe Insulation 5 days Wed 1/13/10 Thu 2/2/10 152FS+1 day 157 Heating- Admin Area 17 days Mon 1/2/10/10 152FS+1 day 159 Pipe Insulation 5 days Mon 12/2/109 Fri 2/19/10 152FS+1 day 161 Sprinkler Piping 13 days Mon 12/2/109 Fri 2/19/10 152FS+1 day 162 Sprinkler Piping 13 days Mon 12/2/109 Wed 1/6/10 49SS+3 days 162 Sprinkler Piping 13 days Mon 12/2/109 Wed 1/2/2/09 163 Electrical-Admin Area 74 days True 12/8/09 Won 1/8/10 48FS+2 days 164 Conduit Rough-In 12 days True 12/8/09 Won 1/8/10 168S+3 day	150	Plumbing- Admin Area	45 days	Wed 12/23/09	Tue 2/23/10	49SS+5 days	-			
152 Domestic Water Piping 9 days Wed 1/23009 Mon 1/1/10 151 153 Gas Lines 6 days Wed 1/23009 Wed 1/6/10 151 154 Compressed Air Lines 6 days Fni 1/7/10 153 155 Pipe Insulation 10 days Fri 1/1/10 153 156 Plumbing Fixtures 4 days Thu 2/2/3/10 154 157 Heating- Admin Area 17 days Wed 1/1/3/10 158 Heating- Admin Area 17 days Wed 1/1/3/10 159 Pipe Insulation 5 days Wed 1/2/10/10 152FS+1 day 159 Pipe Insulation 5 days Mon 12/2/109 Fri 2/19/10/49SS+3 days 160 Fire Protection- Admin Area 45 days Mon 12/2/109 Fri 2/19/10/49SS+3 days 161 Sprinkler Piping 13 days Mon 12/2/109 Fri 3/19/10/48 162 Sprinkler Piping 13 days Mon 12/2/109 Fri 3/19/10/48 164 Conduit Rough-lin 12 days Tue 12/8/09 Mon 12/2/109 164 Conduit Rough-lin 12 days Mon 12/2/109 Fri 3/19/10 167FS+2 days 166 Ligh	151	Vent Risers	5 days	Wed 12/23/09	Tue 12/29/09	49SS+5 days	-			
153 Gas Lines 6 days Wed 1/2/00/9 Wed 1/6/10 151 154 Compressed Air Lines 6 days Thu 1/1/10 Thu 1/1/10 153 155 Pije Insulation 10 days Fni 1/1/510 Thu 2/1/10 Thu 2/2/10 140 156 Plumbing Fixtures 4 days Thu 2/18/10 Tue 2/23/10 140 157 Heating- Admin Area 17 days Wed 1/13/10 Tue 2/23/10 140 157 Heating- Admin Area 17 days Wed 1/13/10 Tue 2/23/10 140 158 Heat Piping 5 days Fri 1/29/10 Thu 2/1/10 158/F58+1 day 159 Pipe Insulation 5 days Mon 12/21/09 Fri 21/91/10 139 160 Fire Protection- Admin Area 45 days Mon 2/15/10 Fri 21/91/10 139 162 Sprinkler Piping 13 days Mon 12/28/09 Won 1/28/109 Wed 1/20/9 48 164 Conduit Rough-In 12 days Tue 12/80/9 Mon 12/28/09 Mon 12/28/09 Mon 12/28/09 Mon 12/28/09 166 Lighting & Emergency Lighting 15 days<	152	Domestic Water Piping	9 days	Wed 12/30/09	Mon 1/11/10	151	-			
154 Compressed Air Lines 6 days Thu 1/7/10 Thu 1/2/10 153 155 Pipe Insulation 10 days Fin 1/5/10 Thu 2/2/10 154 156 Piumping Fixtures 4 days Thu 2/1/10 Tue 2/2/3/10 140 157 Heat Piping 5 days Wed 1/13/10 Thu 2/1/10 152FS+1 day 158 Piumping Fixtures 45 days Wed 1/13/10 Thu 2/1/10 152FS+1 day 158 Pipe Insulation 5 days Wed 1/13/10 Thu 2/1/10 152FS+1 day 159 Pipe Insulation 5 days Mon 12/21/09 Fri 2/19/10 49SS+3 days 161 Sprinkler Heads 5 days Mon 2/15/10 Fri 3/19/10 13 163 Electrical- Admin Area 74 days Tue 12/8/09 Fri 3/19/10 164 Conduit Rough-In 12 days Mon 2/21/09 Fri 3/19/10 165 Cable- Conductors 16 days Mon 2/21/09 Fri 3/19/10 165 Cable- Conductors 16 days Mon 3/2/10 Fri 3/19/10 166 Switches & Plugs 10 days Mo	153	Gas Lines	6 days	Wed 12/30/09	Wed 1/6/10	151				
155 Pipe Insulation 10 days Fri 1/15/10 Thu 1/28/10 154 156 Piumbing Fixtures 4 days Thu 2/18/10 Tue 2/23/10 140 157 Heating- Admin Area 17 days Wed 1/13/10 Thu 2/14/10 152FS+1 day 158 Heat Piping 5 days Wed 1/13/10 Thu 2/14/10 152FS+1 day 159 Pipe Insulation 5 days Mon 12/21/09 Fri 2/19/10 49SS+3 days 160 Fire Protection- Admin Area 45 days Mon 12/21/09 Wed 1/6/10 49SS+3 days 161 Sprinkler Heads 5 days Mon 12/21/09 Fri 2/19/10 130 162 Sprinkler Neads 5 days Mon 12/21/09 Fri 2/19/10 130 162 Sprinkler Neads 5 days Mon 12/21/09 Wed 1/13/10 Tue 1/8/10 Ked 12/23/09/48 163 Electrical- Admin Area 74 days Tue 12/8/09 Wed 1/18/10 164FS+2 days 164 Conduit Rough-In 12 days Mon 2/15/10 Fri 3/19/10 166FS+2 days 166 Lighting & Emergency Lighting 15 days Mon 3/8/10	154	Compressed Air Lines	6 days	Thu 1/7/10	Thu 1/14/10	153				
156 Plumbing Fixtures 4 days Thu 2/18/10 Tue 2/23/10 140 157 Heating- Admin Area 17 days Wed 1/13/10 Tue 2/23/10 140 158 Heat Piping 5 days Wed 1/13/10 Tue 1/19/10 152FS+1 day 159 Pipe Insulation 5 days Mon 1/2/109 Fri 2/19/10 49SS+3 days 160 Fire Protection- Admin Area 45 days Mon 1/2/109 Fri 2/19/10 49SS+3 days 161 Sprinkler Piping 13 days Mon 1/2/109 Fri 2/19/10 49SS+3 days 162 Sprinkler Heads 5 days Tue 1/2/09 Fri 2/19/10 139 163 Electrical- Admin Area 12 days Tue 1/2/09 Wed 1/2/3/09 48 164 Conduit Rough-In 12 days Mon 1/2/2/09 Wol 1/2/3/09 48 166 Lighting & Emergency Lighting 15 days Mon 1/2/8/0 Won 1/8/10 164FS+2 days 167 Lavatory Low Voltage Control 10 days Mon 3/8/10 Fri 3/19/10 167FS+2 days 168 Switches & Plugs 10 days Mon 3/8/10 Fri 3/1	155	Pipe Insulation	10 days	Fri 1/15/10	Thu 1/28/10	154				
157 Heating- Admin Area 17 days Wed 1/13/10 Thu 2/4/10 152FS+1 day 158 Heat Piping 5 days Wed 1/13/10 Tue 1/19/10 152FS+1 day 159 Pipe Insulation 5 days Wed 1/13/10 Thu 2/4/10 158FS+7 days 160 Fire Protection- Admin Area 45 days Mon 12/21/09 Fri 2/19/10 138FS+7 days 161 Sprinkler Piping 13 days Mon 12/21/09 Fri 2/19/10 139 162 Sprinkler Heads 5 days Tue 12/8/09 Fri 3/19/10 48 164 Conduit Rough-In 12 days Tue 12/8/09 Wed 1/2/3/09 48 165 Cable- Conductors 16 days Mon 12/21/09 Fri 3/5/10 139 166 Lighting & Emergency Lighting 15 days Mon 2/15/10 Fri 3/5/10 139 167 Lavatory Low Voltage Control 10 days Mon 3/8/10 Fri 3/19/10 167Fs+2 days 168 Switches & Plugs 10 days Mon 3/8/10 Fri 3/19/10 167Fs+2 days Project: Detailed Project Schedule.mp Date: Tue 10/27/09 Task Split Progress	156	Plumbing Fixtures	4 days	Thu 2/18/10	Tue 2/23/10	140				
158 Heat Piping 5 days Wed 1/13/10 Tue 1/19/10 Tu	157	Heating- Admin Area	17 days	Wed 1/13/10	Thu 2/4/10	152FS+1 day				
159 Pipe Insulation 5 days Fri 1/29/10 Thu 2/4/10 158FS+7 days 160 Fire Protection- Admin Area 45 days Mon 12/21/09 Fri 2/19/10 49SS+3 days 161 Sprinkler Piping 13 days Mon 12/21/09 Fri 2/19/10 49SS+3 days 162 Sprinkler Piping 13 days Mon 2/15/10 Fri 2/19/10 139 163 Electrical- Admin Area 74 days Tue 12/8/09 Fri 3/19/10 48 164 Conduit Rough-In 12 days Tue 12/8/09 Wed 1/2/3/09 48 165 Cable- Conductors 16 days Mon 2/15/10 Fri 3/19/10 168 166 Lighting & Emergency Lighting 15 days Mon 2/15/10 Fri 3/19/10 168S+3 days 168 Switches & Plugs 10 days Thu 2/18/10 Wed 3/3/10 168S+3 days 168 Switches & Plugs 10 days Mon 3/8/10 Fri 3/19/10 167FS+2 days Project: Detailed Project Schedule.mp Date: Tue 10/27/09 Task Split Progress Summary External Tasks Deadline Project Summary Project Summary <t< td=""><td>158</td><td>Heat Piping</td><td>5 days</td><td>Wed 1/13/10</td><td>Tue 1/19/10</td><td>152FS+1 day</td><td></td><td></td><td></td><td></td></t<>	158	Heat Piping	5 days	Wed 1/13/10	Tue 1/19/10	152FS+1 day				
160 Fire Protection- Admin Area 45 days Mon 12/21/09 Fri 2/19/10 49SS+3 days 161 Sprinkler Piping 13 days Mon 12/21/09 Wed 1/k/10 49SS+3 days 162 Sprinkler Heads 5 days Mon 12/21/09 Fri 2/19/10 139 163 Electrical- Admin Area 74 days Tue 12/8/09 Fri 3/19/10 48 164 Conduit Rough-In 12 days Tue 12/8/09 Wed 1/2/23/09 48 165 Cable- Conductors 16 days Mon 12/28/09 Mon 11/8/10 164FS+2 days 166 Lighting & Emergency Lighting 15 days Mon 2/15/10 Fri 3/19/10 166SS+3 days 167 Lavatory Low Voltage Control 10 days Thu 2/18/10 Wed 3/3/10 166SS+3 days 168 Switches & Plugs 10 days Mon 3/8/10 Fri 3/19/10 167FS+2 days Project: Detailed Project Schedule.mp Date: Tue 10/27/09 Task Split Progress Milestone Summary External Tasks Deadline Split Milestone Milestone Project Summary Prage 3	159	Pipe Insulation	5 days	Fri 1/29/10	Thu 2/4/10	158FS+7 days				
161 Sprinkler Piping 13 days Mon 12/21/09 Wed 1/6/10 49SS+3 days 162 Sprinkler Heads 5 days Mon 2/15/10 Fri 2/19/10 139 163 Electrical- Admin Area 74 days Tue 12/8/09 Fri 3/19/10 48 164 Conduit Rough-In 12 days Tue 12/8/09 Wed 1/2/3/09 48 165 Cable- Conductors 16 days Mon 2/15/10 Fri 3/5/10 139 166 Lighting & Emergency Lighting 15 days Mon 2/15/10 Fri 3/19/10 166FS+2 days 167 Lavatory Low Voltage Control 10 days Mon 3/8/10 Fri 3/19/10 166FS+2 days 168 Switches & Plugs 10 days Mon 3/8/10 Fri 3/19/10 167FS+2 days Project: Detailed Project Schedule.mp Date: Tue 10/27/09 Task Split Progress Summary External Tasks Deadline Progrest Summary Project: Detailed Project Schedule.mp Milestone Project Summary External Tasks Deadline Summary Project Summary Project Summary Proj	160	Fire Protection- Admin Area	45 days	Mon 12/21/09	Fri 2/19/10	49SS+3 days				
162 Sprinkler Heads 5 days Mon 2/15/10 Fri 2/19/10 139 163 Electrical- Admin Area 74 days Tue 12/8/09 Fri 3/19/10 48 164 Conduit Rough-In 12 days Tue 12/8/09 Wed 12/23/09 48 165 Cable- Conductors 16 days Mon 2/15/10 Fri 3/5/10 139 166 Lighting & Emergency Lighting 15 days Mon 2/15/10 Fri 3/5/10 139 167 Lavatory Low Voltage Control 10 days Thu 2/18/10 Wed 3/3/10 166SS+3 days 168 Switches & Plugs 10 days Mon 3/8/10 Fri 3/19/10 167FS+2 days Project: Detailed Project Schedule.mp Date: Tue 10/27/09 Task Split Progress Summary External Tasks Deadline Page 3	161	Sprinkler Piping	13 days	Mon 12/21/09	Wed 1/6/10	49SS+3 days				
163 Electrical- Admin Area 74 days Tue 12/8/09 Fri 3/19/10 48 164 Conduit Rough-In 12 days Tue 12/8/09 Wed 12/23/09 48 165 Cable- Conductors 16 days Mon 1/28/09 Mon 1/18/10 164FS+2 days 166 Lighting & Emergency Lighting 15 days Mon 2/15/10 Fri 3/5/10 139 167 Lavatory Low Voltage Control 10 days Thu 2/18/10 Wed 3/3/10 166SS+3 days 168 Switches & Plugs 10 days Mon 3/8/10 Fri 3/19/10 167FS+2 days Project: Detailed Project Schedule.mp Date: Tue 10/27/09 Task Split Progress Summary External Tasks Deadline Project Summary Project Summary External Milestone I Project Summary External Milestone I Project Summary Project Summary External Milestone I Project Summary Project Summary External Milestone I Project Summary Project Summary Project Summary External Milestone I </td <td>162</td> <td>Sprinkler Heads</td> <td>5 days</td> <td>Mon 2/15/10</td> <td>Fri 2/19/10</td> <td>139</td> <td></td> <td></td> <td></td> <td></td>	162	Sprinkler Heads	5 days	Mon 2/15/10	Fri 2/19/10	139				
164 Conduit Rough-In 12 days Tue 12/8/09 Wed 12/23/09 48 165 Cable- Conductors 16 days Mon 12/28/09 Mon 1/18/10 164FS+2 days 166 Lighting & Emergency Lighting 15 days Mon 2/15/10 Fri 3/5/10 139 167 Lavatory Low Voltage Control 10 days Thu 2/18/10 Wed 3/3/10 166SS+3 days 168 Switches & Plugs 10 days Mon 3/8/10 Fri 3/19/10 167FS+2 days Project: Detailed Project Schedule.mp Date: Tue 10/27/09 Task Split Progress Summary External Tasks Deadline Project Summary Project Summary Page 3	163	Electrical- Admin Area	74 days	Tue 12/8/09	Fri 3/19/10	48				
165 Cable- Conductors 16 days Mon 1/2/28/09 Mon 1/18/10 164FS+2 days 166 Lighting & Emergency Lighting 15 days Mon 2/15/10 Fri 3/5/10 139 167 Lavatory Low Voltage Control 10 days Thu 2/18/10 Wed 3/3/10 166SS+3 days 168 Switches & Plugs 10 days Mon 3/8/10 Fri 3/19/10 167FS+2 days Project: Detailed Project Schedule.mp Date: Tue 10/27/09 Task Split Progress Milestone Summary Project Summary External Tasks External Milestone Deadline Page 3	164	Conduit Rough-In	12 days	Tue 12/8/09	Wed 12/23/09	48				
166 Lighting & Emergency Lighting 15 days Mon 2/15/10 Fri 3/5/10 139 167 Lavatory Low Voltage Control 10 days Thu 2/18/10 Wed 3/3/10 166SS+3 days 168 Switches & Plugs 10 days Mon 3/8/10 Fri 3/19/10 167FS+2 days Project: Detailed Project Schedule.mp Date: Tue 10/27/09 Task Split Progress Summary External Tasks Deadline Project Summary Milestone Milestone Project Summary External Milestone Page 3	165	Cable- Conductors	16 days	Mon 12/28/09	Mon 1/18/10	164FS+2 days				
167 Lavatory Low Voltage Control 10 days Thu 2/18/10 Wed 3/3/10 166SS+3 days 168 Switches & Plugs 10 days Mon 3/8/10 Fri 3/19/10 167FS+2 days Project: Detailed Project Schedule.mp Date: Tue 10/27/09 Task Split Progress Summary External Tasks Deadline File Milestone Milestone Project Summary Project Summary External Milestone Page 3	166	Lighting & Emergency Lighting	15 days	Mon 2/15/10	Fri 3/5/10	139				
168 Switches & Plugs 10 days Mon 3/8/10 Fri 3/19/10 167FS+2 days Project: Detailed Project Schedule.mp Date: Tue 10/27/09 Task Split Progress Milestone Summary Milestone External Tasks Deadline Project: Detailed Project Schedule.mp Date: Tue 10/27/09 Task Split Milestone Milestone Summary External Milestone Deadline Project Summary Project Summary Project Summary Page 3 Page 3	167	Lavatory Low Voltage Control	10 days	Thu 2/18/10	Wed 3/3/10	166SS+3 days	_			
Project: Detailed Project Schedule.mp Date: Tue 10/27/09 Task Split Progress Milestone Summary External Tasks Deadline Project Summary Project Summary Project Summary Project Summary External Milestone Deadline	168	Switches & Plugs	10 days	Mon 3/8/10	Fri 3/19/10	167FS+2 days				
Date: Tue 10/27/09 Split Milestone Project Summary External Milestone Page 3	Project	· Detailed Project Schedule mp Task)	Progress		Summary	·	External Tasks	Deadline
Page 3	Date: T	ue 10/27/09			Milestone		Project Summary		External Milestone	
Page 3		Spirt			MICOLUIE	•	r roject Summary	•		
								Page 3		

ID	Task Name	Duration	Start	Finish Predecessors												2009				
					Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
169	Testing & Close-out	29 days	Fri 2/19/10	Wed 3/31/10 149																
170	Test, Adjust, & Balance	15 days	Fri 2/19/10	Thu 3/11/10 149																
171	Sprinkler System Testing	5 days	Mon 2/22/10	Fri 2/26/10 170SS+1 day																
172	Plumbing Testing	5 days	Thu 3/4/10	Wed 3/10/10 170FS-6 days																
173	HEF System Testing	5 days	Tue 3/9/10	Mon 3/15/10 170FS-3 days																
174	PVT- HVAC	12 days	Fri 3/12/10	Mon 3/29/10 170																
175	Fire Alarm Testing	3 days	Tue 3/16/10	Thu 3/18/10 173																
176	Electrical Systems Testing	5 days	Mon 3/22/10	Fri 3/26/10 168																
177	Final Inspection	1 day	Tue 3/30/10	Tue 3/30/10 174																
178	Building Acceptance/Occupancy	1 day	Wed 3/31/10	Wed 3/31/10 177																
179	Project Complete	0 days	Wed 3/31/10	Wed 3/31/10 178																

Project: Detailed Project Schedule.mp Date: Tue 10/27/09	Task Split	Progress Milestone		Summary Project Summary		External Tasks External Milestone	Deadline	Ŷ
					Page 4			

r	Anr	May	lun	hul	Aug	Son	Oct	Nov	Dec	2010	Feb Mar Apr
	Дрі	Iviay	Jun	501	Aug	Jep		INUV	Dec	Jan	
											₩
											₽
											♦ 3/31
eac	lline		仑								

Construction Management Martinsburg, WV

Appendix D

C-5 Fuel Cell Facility Steel Erection Sequencing

Page | 50

Construction Management Martinsburg, WV

Appendix E

C-5 Fuel Cell Facility General Conditions Estimate

Page | 51

Description	Quantity	Units	Unit Cost	Total Cost
Project Supervision				
Superintendent	60	WKS	\$2,975	\$178,500
Asst. Superintendent	60	WKS	\$2,750	\$165,000
Job Engineer	60	WKS	\$1,800	\$108,000
Quality Control Supervisor	60	WKS	\$1,800	\$108,000
Mechanical QC Manager	52	WKS	\$1,800	\$93,600
Electrical QC Manager	52	WKS	\$1,800	\$93,600
				\$746,700
Office Trailer-Double Wide	5	EA	\$5,915	\$29,575
Office Phones (5 trailers)	13	MOS	\$440	\$5,720
Office Equipment (5 trailers)	13	MOS	\$1,323	\$17,193
Job Photos	7	DAY	\$1,525	\$10,675
				\$63,163
Mobilization				
Initial	30	CD	\$610	\$18,300
Equipment	20	WKS	\$810	\$16,200
Concrete Equipment	16	WKS	\$2,100	\$33,600
Material	52	WKS	\$200	\$10,400
				\$78,500
Equipment Maintenance				
Equipment Maintenance	52	WKS	\$140	\$7,280
Concrete Equipment	16	WKS	\$380	\$6,080
				\$13,360
Misc. Job Support Allowance	1	LS	\$5,500	\$5,500
Scheduling	1	LS	\$10,704	\$10,704
-				
Layout	~ 0		<u> </u>	<u> </u>
Building Layout	70	MSF	\$120	\$8,400
Field Survey	87	MSF	\$250	\$21,750
Layout Sub	1	LS	\$6,000	\$6,000
				\$36,150
	10	MOG	0550	07.150
Temp Tollets	13	MOS	\$550	\$7,150
Town Utilities				
Temp Electric	19	MOS	¢100	¢1.200
Temp Water	13 19	MOS	\$100 \$10	\$1,300
	15	MOS	\$10	\$130 \$1.490
				\$1,43U

Winter Protection/Heat				
Temp Heat	4	MOS	\$8,700	\$34,800
Snow & Ice Removal	3	MOS	\$5,500	\$16,500
Concrete Protection	4	MOS	\$4,700	\$18,800
Masonry Heating	3	MOS	\$3,800	\$11,400
				\$81,500
Temp Floor Protection	864	CSF	\$25	\$21,600
Temp Storage Trailers- Owned	6	EA	\$130	\$780
Temp Roads	500	SY	\$15	\$7,500
Temp Fencing	2,000	LF	\$6	\$12,000
Dewatering/Pumping	5	MOS	\$1,500	\$7,500
Permits	1	LS	\$6,690	\$6,690
Bonds				
Payment Bond	1	LS	\$80,274	\$80,274
Performance Bond	1	LS	\$160,547	\$160,547
				\$240,821
Builder's Risk Insurance	1	LS	\$64,219	\$64,219
Testing	1	LS	\$106,000	\$106,000
Cleanup				
Weekly Cleanup	80	MSF	\$600	\$48,000
Final Cleanup	80	MSF	\$100	\$8,000
				\$56,000
Dumpster/Trash Removal	13	MOS	\$650	\$8,450
Safety				
General Building Safety	58	WKS	\$275	\$15,950
Safety Supervisor	58	WKS	\$2,475	\$143,550
				\$159,500
As-Built Drawings	1	LS	\$6,000	\$6,000
Punch-out	1	LS	\$5,500	\$5,500
		GRAN	D TOTAL	\$1.746.717

Construction Management Martinsburg, WV

Appendix F

C-5 Fuel Cell Facility Structural Systems Estimate

Page | 52

STRUCTURAL SYSTEM ESTIMATE C-5 Fuel Cell Facility

CONC	CRETE					
		Quantity	Unit	Unit Cost		Total Cost
	3' dia. Caisson	340	VLF	\$ 75.23	\$	25,578.20
	6' dia. Caisson	386	VLF	\$ 210.31	\$	81,179.66
	Pier Caps	426	СҮ	\$ 237.43	\$	101,145.18
	Grade Beams	104	СҮ	\$ 250.34	\$	26,035.36
	Strip Footing	10	СҮ	\$ 250.34	\$	2,503.40
	6" Slab on Grade	197	СҮ	\$ 217.14	\$	42,776.58
	8" Slab on Grade	1109	СҮ	\$ 217.14	\$	240,808.26
	14" Slab on Grade	875	СҮ	\$ 217.14	\$	189,997.50
	Jacking Points Slab	53	СҮ	\$ 217.14	\$	11,508.42
	Trench Drain Slab	489	СҮ	\$ 217.14	\$	106,181.46
			Conc	rete Total	\$	827,714.02
MASU		Quantity	Unit	Unit Cost		Total Cost
	8" CMU bearing wall	2008	SE	\$ 7.65	Ś	22 934 70
	12" CMU bearing wall	2330	SF	<u> </u>	Ş S	32 112 00
		2000	51	0 11.10	Ŷ	02,112.00
			Maso	nry Total	\$	55,046.70
STEE	L					
		Quantity	Unit	Unit Cost		Total Cost
	Columns	334.48	Ton	\$ 4,330.66	\$	1,448,519.16
	Support Areas	62.15	Ton	\$ 4,330.66	\$	269,150.52
	Wind Girts	127.96	Ton	\$ 4,330.66	\$	554,151.25
	Truss Structure	1348.19	Ton	\$ 4,330.66	\$	5,838,552.51
	24LH Joists	1792	LF	\$ 31.65	\$	56,716.80
	14K Joists	1260	LF	\$ 10.60	\$	13,356.00
	16K Joists	12,888	LF	\$ 10.20	\$	131,457.60
	18K Joists	1456	LF	\$ 11.38	\$	16,569.28
	18 Ga. Metal Roof Deck	37,320	SF	\$ 3.42	\$	127,634.40
	20 Ga. Metal Roof Deck	42,032	SF	\$ 2.75	\$	115,588.00
		+	Ste	al Total	Ś	8 571 695 51
			Ste		Ŷ	0,071,000.01
			Struct	ural Total	\$	9,454,456.23
		-				
Construction Management Martinsburg, WV

Appendix G

C-5 Fuel Cell Facility Solyndra Specifications

Page | 53

Electrical Data

Measured at Standard Test Conditions (STC) irradiance of 1000 W/m², air mass 1.5, and cell temperature 25° C

Model Number		SL-001-150	SL-001-157	SL-001-165	SL-001-173	SL-001-182	SL-001-191	SL-001-200 Release Date TBD
PowerRating (Pmp)	Wp	150 Wp	157 Wp	165 Wp	173 Wp	182 Wp	191 Wp	200 Wp
Power Tolerance (%)	%/Wp	+4, -5	+/-4	+/-4	+/-4	+/-4	+/-4	+/-4
V_{mp} (Voltage at Maximum Power)	Volts	65.7 V	67.5 V	69.6 V	71.7 V	73.9 V	76.1 V	78.3 V
Imp (Current at Maximum Power)	Amps	2.28 A	2.33 A	2.37 A	2.41 A	2.46 A	2.51 A	2.55 A
V _{oc} (Open Circuit Voltage)	Volts	91.4 V	92.5 V	93.9 V	95.2 V	96.7 V	98.2 V	99.7 V
Isc (Short Ciruit Current)	Amps	2.72 A	2.73 A	2.74 A	2.75 A	2.76 A	2.77 A	2.78 A
Temp. Coefficient of V_{oc}	%/°C				24			
Temp. Coefficient of Isc	%/°C				02			
Temp. Coefficient of Power	%/°C				26			

System Information

Cell type	Cylindrical CIGS
Maximum System Voltage	Universal design: 1000V (IEC) & 600V (UL) systems
Dimensions	Panel: 1.82 m x 1.08 m x 0.05 m Height: 0.3 m to top of panel on mounts
Mounts	Non-penetrating, powder-coated Aluminum Up to 2.17 mounts per panel
Connectors	4 Tyco Solarlok; 0.20 m cable
Series Fuse Rating	23 Amps
Roof Load	16 kg/m² (3.3 lb/ft²) panel and mounts
Panel Weight	31 kg (68 lb) without mounts
Snow Load Maximum	2800 Pa (58.5 lb/ft²)
Wind Performance	208 km/h (130 mph) maximum Self-ballasting with no attachments
Operating and Storage Temp	-40°C to +85°C
Normal Operating Cell Temperature (NOCT)	41.7°C at 800 W/m², Temp = 20°C, Wind = 1m/s
Certifications/Listings	UL1703, IEC 61646, CEC listing IEC 61730, IEC 61646, CE Mark Application Class A per IEC 61730-2 Fire Class C
Warranty	25 year limited power warranty 5 year limited product warranty

Solyndra's panels come with all of the mounts, grounding connectors, lateral clips, and fasteners required to build a standard array.

Specifications subject to change without notice.

Solyndra, Inc. • 47700 Kato Road • Fremont, CA • www.solyndra.com

Albedo Reflectivity vs. Annual Energy Yield

- Energy with White Membrane: 80% Top / 20% Bottom
- Rule of thumb: 4% drop in reflectivity = 1% annual energy yield loss .

Example Roof Types	Roof	Annual
	Reflectivity	Energy Yield
White "Cool Roof" Membrane	95%	100%
or Reflective Field Applied	%06	9666
Coatings	85%	98%
10	80%	9696
	75%	959%
	20%	94%
Tan Membrane	65%	93%
	60%	91%
Light Grey Membrane	55%	30%
Light Green Membrane	50%	%68
Metal	45%	88%
	40%	86%
Dark Green Membrane	35%	85%
Grey Membrane	30%	84%
Dark Grey Bitumen	25%	83%
	20%	81%
	15%	80%
Tar / Black EPDM	10%	79%
	5%	78%
	1%	77%

	Reflectivity	Energy Yield
White "Cool Roof" Membrane	95%	100%
or Reflective Field Applied	%06	9666
Coatings	%58	98%
10	80%	9696
	75%	95%
	20%	94%
Tan Membrane	65%	93%
	60%	91%
Light Grey Membrane	55%	30%
Light Green Membrane	50%	%60
Metal	45%	88%
	40%	86%
Dark Green Membrane	35%	85%
Grey Membrane	30%	84%
Dark Grey Bitumen	25%	83%
	20%	81%
	15%	80%
Tar / Black EPDM	10%	79%
	5%	78%
	40/	770/

SOLYNDRA

Graph is for demonstration purposes, not actual data

Solyndra Confidential

Construction Management Martinsburg, WV

Appendix H

C-5 Fuel Cell Facility Solyndra Calculations

Page | 54

(AMPAD)

ಶ್ರ

Construction Management Martinsburg, WV

Appendix I

C-5 Fuel Cell Facility

Structural Drawings

Page | 55

STRUCTURAL DRAWINGS

Construction Management Martinsburg, WV

Appendix J

C-5 Fuel Cell Facility Structural Calculations

Page | 56

Wall. Design Kyle Goodyear Interior Load Bearing Wall - 2 Conditions to examine 1) CI - 5-301 > 28' from wall to beam Z Loading per SF is 2) C3 - 5-302 > 21' from wall to beam J some for both Condition W24×94 Steel Joist Concrete @ 4'-0" O.C. Wall 16 28' CONIC FLOOR Assumptions: Concrete Wall is concentrically loaded -> axial load only; horizontal load is carried by W24×94 Printed - Printed connection -> K=1.0 f: : 3000 psi fi = 60 Kal Loading as follows: Dead = 213 psf from joists and ceiling materials Live = 20 psf construction load (Roof Zue) · Using Strength design load combination 1.20+ 1.66Lr

CANPAD

· Solve both conditions for bearing and axial load capacity, then use more stringent condition for the reinforcement design.

Tributory area for a single joist anto the wall.

4' x14' = 56 ft2

Load for each joist onto wall $P_0 = 21.3 \text{ psf} \times 56 \text{ fr}^2 = 1193 \text{ lb}$ $P_1 = 20 \text{ psf} \times 56 \text{ fr}^2 = 1120 \text{ lb}$ $P_0 = 1.2(1193) + 1.6(1120) = 3223 \text{ lb} = 3.22 \text{ k}$

Select wall thickness, h

anaman

 $h \ge \frac{l_{u}}{25} = \frac{|l_{u}' \times |2'|}{25} = 7.68 " \rightarrow use 8" + hickness$ or $<math display="inline">\ge 4''$

Bearing Plates: 63/4" × 10" = 67.5in² Effective Width 54' x12" = 48" £63/4" + 4x8" = <u>38.75</u>" Igoverns

Bearing Capacity: $P_{U} \leq \beta_{15} + \beta_{15} + \beta_{10} = 0.65$ $\beta (.85 + \beta_{10}) = 0.65 (.85)(3)(07.5) = 112k >> 3.22k = P_{U} \otimes k$ Axial Load Capacity: $P_{U} \leq \beta P_{n}$ $\beta P_{n} = \beta .55 + \beta_{10} \left[1 - \left(\frac{k}{32n} \right)^{2} \right]$; Ag = effective width $\times h = 38.75" \times 8"$ $= 310 \cdot n^{2}$ $\delta = 0.70$

\$P_= 070(.55)(3)(310)[1-(1×16×10)2] = 358[.4375] \$P_= 157 K >> 3.22K=R OK

Thickness of 8" is ok

CAMPAD

Assumptions: Same as Condition 1 Strength Design Load Combination: 1.2D+ 1.6Lr Tributory Area for a single joist onto the wall: 4' × 10.5' = 42A2 Load for each joist anto wall: Pp= 21.3 psf × 42A2 = 895 16 PL= 20 psf × 42 A2 = 840 16 Pu: 1.2 (895) + 1.6 (840) = 2418 16 = 2.42 K Select wall thickness, h h ≥ = = = 7.68" > use 8" thickness 24" Bearing Plates: 634"×10" = 67.5 m² effective Effective Width 54'x12" - 48" Atons £ 674"+4×8" = 38,75"

gaverna

3

Bearing Capacity:
$$P_{U} \leq \phi \; 0.85 \; f'_{c} \; A_{b}; \; \phi = 0.65$$

 $\phi \; (.85 \; f'_{c} \; A_{b}) = 0.65 \; (.85)(3)(67.5;n^{2}) = 112 \; k > 7 \; 2.42 \; k = P_{u} \; V \; OK$

Axial Load Capacity:
$$P_{v} \leq 0/P_{n}$$

 $\beta P_{n} = \beta .55 f_{c}^{c} A_{g} \left[1 - \left(\frac{kR}{32L} \right)^{2} \right] ; \beta = 0.76$
 $= 0.76 (.55) (3) (38.75" \times 8') \left[1 - \left(\frac{10 \times 16M2}{32M8} \right)^{2} \right]$
 $\beta P_{n} = 157 \times 32.42 \times = P_{v} O \times$

8" thickness is 0K

Reinforcement

CAMPAD

Vertical: A.= .0012×12"×8"= .115 in2

Horizontal: Au= . 0020 × 12" × 8"= . 192 m2

Spacing: SE 3h = 3(8") = 24" £ 18" - governs

Use #4 @ 18" or for vertical > .133 m²/A >.115 m²/A OK Use #4 @ 12" or for porizontal > .200 m²/A 7.192 m²/A OK

4

Construction Management Martinsburg, WV

Appendix K

C-5 Fuel Cell Facility Masonry Schedule of Values

Page | 57

AIA Type Document Application and Certification for Payment

TO (OWNER): 2700 Water St. York, PA 17403-9306 York, PA 17403-9306 York, PA 17403-9306

APPLICATION NO: 5 DISTRIBUTION PERIOD TO: 1/31/2010 _ OWNER _ ARCHITECT _ CONTRACTOR

Page 2 of 2

ARCHITECTS PROJECT NO:

VIA (ARCHITECT):

FROM (CONTRACTOR): RALPH E. TOLBERT MASONRY, INC. 950 Hollywell Ave Chambersburg, PA 17201 CONTRACT DATE:

CONTRACT FOR:

ITEM	DESCRIPTION	SCHEDULE	PREVIOUS APPLICATIONS	COMPLETED THIS PERIOD	STORED MATERIAL	COMPLETED STORED	70	BALANCE	RETAINAGE
-	Foundation CMU Labor	1,700.00	1,700.00	00.0	0.00	1,700.00	100.00	0.0	170.00
2	Foundation CMU Material	1,500.00	1,500.00	00.0	0.00	1,500.00	100.00	0.00	150.00
e	Exterior CMU Labor	2,900.00	2,900.00	00.0	0.00	2,900.00	100.00	00.0	290.00
4	Exterior CMU Material	3,200.00	3,200.00	00.0	0.00	3,200.00	100.00	00.0	320.00
5	Interior CMU Labor	67,000.00	43,550.00	23,450.00	0.00	67,000.00	100.00	0.00	6.700.00
9	Interior CMU Material	23,100.00	20,790.00	2,310.00	0.00	23,100.00	100.00	0.00	2.310.00
7	Splitface Labor	36,500.00	36,500.00	00.0	0.00	36,500.00	100.00	0.00	3.650.00
ø	Splitface Material	36,300.00	36,300.00	0.00	0.0	36,300.00	100.00	00.0	3 630 00
6	Grout Labor	20,000.00	19,000.00	1,000.00	0.00	20,000.00	100.00		2 000 00
10	Grout Material	7,000.00	7,000.00	00.0	0.0	7,000.00	100.00	00.0	200.00
11	Miscellaneous	19,800.00	19,800.00	0.00	0.0	19,800.00	100.00	00.0	1 980 00
12	C/O#1 Addtl Foundation Work	11,011.00	11,011.00	00.0	0.00	11,011.00	100.00	00.0	1,101.10
	REPORT TOTALS	\$230,011.00	\$203,251.00	\$26,760.00	\$0.00	\$230,011.00	100.00	\$0.00	\$23,001.10

Construction Management Martinsburg, WV

Appendix L

C-5 Fuel Cell Facility

Site Logistics Plans

Page | 58

Construction Management Martinsburg, WV

Appendix M

C-5 Fuel Cell Facility Slab Sequence Estimates

Page | 59

		H	IANGAR SI	LAB S	SEQUEN	CE CO	MPARI	SON			
		Daily Output	Quantity	Unit	Material Cost	Labor Cost	Equip. Cost	Total Cost	Total Incl. O&P	Estimated Cost	Duration (hours)
As	-Built Hangar Slab Sequence										
8	80', 75', 43', 42', 42'										
	031113 Forms- 8" high steel forms	960	1,200.00	LF	4.26	1.26	0	5.52	6.65	\$ 7,980.00	10.00
	032110 Reinforcing- #4 @14"oc										
	80' Pour	2.3	13.71	Ton	1475	620	0	2095	2650.00	\$ 36,331.50	47.69
	75' Pour	2.3	12.88	Ton	1475	620	0	2095	2650.00	\$ 34,132.00	44.80
	43' Pour	2.3	7.36	Ton	1475	620	0	2095	2650.00	\$ 19,504.00	25.60
	42' Pour	2.3	2.46	Ton	1475	620	0	2095	2650.00	\$ 6,519.00	8.56
	42' Pour	2.3	2.46	Ton	1475	620	0	2095	2650.00	\$ 6,519.00	8.56
	032110 Dowels- #1, 18" long	110	800	EA	2.62	6.5	0	9.12	13.50	\$ 10,800.00	58.18
	req. at all constr. joints (12"oc)										
	3 day wait before adjacent pour										
	033053 Slab- 8" w/textured finish										
	80' Pour	2500	23,840.00	SF	2.68	0.86	0.01	3.55	4.24	\$ 101,081.60	76.29
	75' Pour	2400	22,350.00	SF	2.68	0.86	0.01	3.55	4.24	\$ 94,764.00	74.50
	43' Pour	2320	12,814.00	SF	2.68	0.86	0.01	3.55	4.24	\$ 54,331.36	44.19
	42' Pour	2320	4,284.00	SF	2.68	0.86	0.01	3.55	4.24	\$ 18,164.16	14.77
	42' Pour	2320	4,284.00	SF	2.68	0.86	0.01	3.55	4.24	\$ 18,164.16	14.77

TOTAL COST/HOURS \$ 408 290 78 427			
	TOTAL COST/HOURS	\$ 408,290.78	427.90

Assumptions: daily ouput for placement of concrete increases with width of pour (based on survey results from industry members)

	H	IANGAR SI	LAB S	SEQUEN	CE CO	MPARI	SON			
	Daily Output	Quantity	Unit	Material Cost	Labor Cost	Equip. Cost	Total Cost	Total Incl. O&P	Estimated Cost	Duration (hours)
Proposed Sequence #1										
(4) 49.5', (2) 42'										
031113 Forms- 8" high steel forms	960	1,498.00	LF	4.26	1.26	0	5.52	6.65	\$ 9,961.70	12.48
032110 Reinforcing- #4 @14"oc										
49.5' Pour	2.3	8.51	Ton	1475	620	0	2095	2650.00	\$ 22,551.50	29.60
49.5' Pour	2.3	8.51	Ton	1475	620	0	2095	2650.00	\$ 22,551.50	29.60
49.5' Pour	2.3	8.51	Ton	1475	620	0	2095	2650.00	\$ 22,551.50	29.60
49.5' Pour	2.3	8.51	Ton	1475	620	0	2095	2650.00	\$ 22,551.50	29.60
42' Pour	2.3	2.46	Ton	1475	620	0	2095	2650.00	\$ 6,519.00	8.56
42' Pour	2.3	2.46	Ton	1475	620	0	2095	2650.00	\$ 6,519.00	8.56
032110 Dowels- #1, 18" long	110	1,098	EA	2.62	6.5	0	9.12	13.50	\$ 14,823.00	79.85
req. at all constr. joints (12"oc)										
3 day wait before adjacent pour										
033053 Slab- 8" w/textured finish										
49.5' Pour	2350	14,751.00	SF	2.68	0.86	0.01	3.55	4.24	\$ 62,544.24	50.22
49.5' Pour	2350	14,751.00	SF	2.68	0.86	0.01	3.55	4.24	\$ 62,544.24	50.22
49.5' Pour	2350	14,751.00	SF	2.68	0.86	0.01	3.55	4.24	\$ 62,544.24	50.22
49.5' Pour	2350	14,751.00	SF	2.68	0.86	0.01	3.55	4.24	\$ 62,544.24	50.22
42' Pour	2320	4,284.00	SF	2.68	0.86	0.01	3.55	4.24	\$ 18,164.16	14.77
42' Pour	2320	4,284.00	SF	2.68	0.86	0.01	3.55	4.24	\$ 18,164.16	14.77

TOTAL COST/HOURS \$ 414,533.98 458.26

Assumptions: daily ouput for placement of concrete increases with width of pour (based on survey results from industry members)

		H	IANGAR SI	LAB S	SEQUEN	CE CO	MPARI	SON			
		Daily Output	Quantity	Unit	Material Cost	Labor Cost	Equip. Cost	Total Cost	Total Incl. O&P	Estimated Cost	Duration (hours)
Pr	pposed Sequence #2										
(2) 99', 84'										
	031113 Forms- 8" high steel forms	960	800.00	LF	4.26	1.26	0	5.52	6.65	\$ 5,320.00	6.67
	032110 Reinforcing- #4 @14"oc										
	99' Pour	2.3	16.93	Ton	1475	620	0	2095	2650.00	\$ 44,864.50	58.89
	99' Pour	2.3	16.93	Ton	1475	620	0	2095	2650.00	\$ 44,864.50	58.89
	84' Pour	2.3	5.31	Ton	1475	620	0	2095	2650.00	\$ 14,071.50	18.47
	032110 Dowels- #1, 18" long	110	400	EA	2.62	6.5	0	9.12	13.50	\$ 5,400.00	29.09
	req. at all constr. joints (12"oc)										
	3 day wait before adjacent pour										
	033053 Slab- 8" w/textured finish										
	99' Pour	2550	29,502.00	SF	2.68	0.86	0.01	3.55	4.24	\$ 125,088.48	92.56
	99' Pour	2550	29,502.00	SF	2.68	0.86	0.01	3.55	4.24	\$ 125,088.48	92.56
	84' Pour	2500	8,568.00	SF	2.68	0.86	0.01	3.55	4.24	\$ 36,328.32	27.42

|--|

Assumptions: daily ouput for placement of concrete increases with width of pour (based on survey results from industry members)